Tìm GTNN của A
A= x2 - 4xy + 5y2 + 10x - 22y + 28
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AEHF có \(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
nên AEHF là hình chữ nhật
b: AEHF là hình chữ nhật
=>HF//AE và HE//AF
=>HF//AB và HE//AC
Xét ΔABC có
H là trung điểm của BC
HE//AC
Do đó: E là trung điểm của AB
Xét ΔABC có
H là trung điểm của BC
HF//AB
Do đó: F là trung điểm của AC
Xét tứ giác AKBH có
E là trung điểm chung của AB và KH
=>AKBH là hình bình hành
c: Xét ΔABC có
H,E lần lượt là trung điểm của BC,BA
=>HE là đường trung bình của ΔABC
=>\(HE=\dfrac{AC}{2}\)
mà \(HE=\dfrac{HK}{2}\)
nên AC=HK
Xét tứ giác ACHK có
HK//AC
HK=AC
Do đó: ACHK là hình bình hành
=>AH cắt CK tại trung điểm của mỗi đường
mà O là trung điểm của AH
nên O là trung điểm của CK
=>C,O,K thẳng hàng
\(\overline{abccba}=100001xa+10010xb+1100xc=\)
\(=11x9091xa+11x910xb+11x100xc=\)
\(=11x\left(9091xa+910xb+100xc\right)⋮11\)
a: ĐKXĐ: \(x\ne-1\)
\(x^2+x=0\)
=>x(x+1)=0
=>\(\left[{}\begin{matrix}x=0\left(nhận\right)\\x=-1\left(loại\right)\end{matrix}\right.\)
Khi x=0 thì \(A=\dfrac{0-3}{0+1}=\dfrac{-3}{1}=-3\)
b: \(Q=A\cdot B\)
\(=\dfrac{x-3}{x+1}\left(\dfrac{3}{x-3}-\dfrac{6x}{9-x^2}+\dfrac{x}{x+3}\right)\)
\(=\dfrac{x-3}{x+1}\left(\dfrac{3\left(x+3\right)+6x+x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\right)\)
\(=\dfrac{x-3}{x+1}\cdot\dfrac{3x+9+6x+x^2-3x}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{1}{x+1}\cdot\dfrac{x^2+6x+9}{x+3}=\dfrac{x+3}{x+1}\)
a: \(x^2-3x+1>2\left(x-1\right)-x\left(3-x\right)\)
=>\(x^2-3x+1>2x-2-3x+x^2\)
=>-3x+1>-x-2
=>-2x>-3
=>\(x< \dfrac{3}{2}\)
b: \(\left(x-1\right)^2+x^2< =\left(x+1\right)^2+\left(x+2\right)^2\)
=>\(x^2-2x+1+x^2< =x^2+2x+1+x^2+4x+4\)
=>-2x+1<=6x+5
=>-7x<=4
=>\(x>=-\dfrac{4}{7}\)
c:
\(\left(x^2+1\right)\left(x-6\right)< =\left(x-2\right)^3\)
=>\(x^3-6x^2+x-6< =x^3-6x^2+12x-8\)
=>x-6<=12x-8
=>-11x<=-8+6=-2
=>\(x>=\dfrac{2}{11}\)
\(y:\dfrac{1}{16}-y:0,25-12\cdot y:6=41,5\)
=>\(16y-4y-2y=41,5\)
=>10y=41,5
=>\(y=\dfrac{41.5}{10}=4,15\)
ĐKXĐ: \(x\ne1\)
c: Để A>1 thì \(A-1>0\)
=>\(\dfrac{x^2-x+1}{x-1}-1>0\)
=>\(\dfrac{x^2-x+1-x+1}{x-1}>0\)
=>\(\dfrac{x^2-2x+2}{x-1}>0\)
mà \(x^2-2x+2=\left(x-1\right)^2+1>=1>0\forall x\)
nên x-1>0
=>x>1
d: Để A nguyên thì \(x^2-x+1⋮x-1\)
=>\(x\left(x-1\right)+1⋮x-1\)
=>\(1⋮x-1\)
=>\(x-1\in\left\{1;-1\right\}\)
=>\(x\in\left\{2;0\right\}\)
Để giải các bài toán liên quan đến hàm số \[ A = \frac{x^2 - x + 1}{x - 1}, \] ta cần phân tích hàm số này.
### 1. Tìm điều kiện để \( A > 1 \)
Để tìm các giá trị của \( x \) sao cho \( A > 1 \), ta sẽ làm theo các bước sau:
1. **Biến đổi hàm số**:
\[
A = \frac{x^2 - x + 1}{x - 1}
\]
Ta phân tích phân thức này bằng cách chia \( x^2 - x + 1 \) cho \( x - 1 \) bằng phép chia đa thức:
**Chia \( x^2 - x + 1 \) cho \( x - 1 \):**
- Chia \( x^2 \) cho \( x \) được \( x \).
- Nhân \( x \) với \( x - 1 \) được \( x^2 - x \).
- Trừ \( x^2 - x \) khỏi \( x^2 - x + 1 \) ta còn dư \( 1 \).
Vậy,
\[
\frac{x^2 - x + 1}{x - 1} = x + \frac{2}{x - 1}
\]
2. **Đặt điều kiện \( A > 1 \)**:
\[
x + \frac{2}{x - 1} > 1
\]
- Trừ 1 từ cả hai vế:
\[
x + \frac{2}{x - 1} - 1 > 0
\]
- Kết hợp các hạng tử:
\[
x - 1 + \frac{2}{x - 1} > 0
\]
- Đặt \( t = x - 1 \), ta có:
\[
t + \frac{2}{t} > 0
\]
- Phân tích bất phương trình:
\[
t^2 + 2 > 0
\]
Vì \( t^2 + 2 \) luôn dương (bất kể giá trị của \( t \)), bất phương trình luôn đúng với mọi giá trị của \( t \neq 0 \). Do đó, điều kiện để \( A > 1 \) là \( x \neq 1 \).
### 2. Tìm giá trị nguyên của \( x \) sao cho \( A \) là số nguyên
1. **Biến đổi hàm số**:
\[
A = x + \frac{2}{x - 1}
\]
Để \( A \) là số nguyên, thì \(\frac{2}{x - 1}\) phải là số nguyên. Điều này có nghĩa là \( x - 1 \) phải là một ước của 2.
2. **Tìm các ước của 2**:
- Các ước của 2 là \( \pm 1, \pm 2 \).
3. **Tìm các giá trị tương ứng của \( x \)**:
- Nếu \( x - 1 = 1 \), thì \( x = 2 \).
- Nếu \( x - 1 = -1 \), thì \( x = 0 \).
- Nếu \( x - 1 = 2 \), thì \( x = 3 \).
- Nếu \( x - 1 = -2 \), thì \( x = -1 \).
4. **Kiểm tra các giá trị**:
- Với \( x = 2 \):
\[
A = \frac{2^2 - 2 + 1}{2 - 1} = \frac{3}{1} = 3
\]
- Với \( x = 0 \):
\[
A = \frac{0^2 - 0 + 1}{0 - 1} = \frac{1}{-1} = -1
\]
- Với \( x = 3 \):
\[
A = \frac{3^2 - 3 + 1}{3 - 1} = \frac{7}{2} = 3.5
\]
(Không phải là số nguyên)
- Với \( x = -1 \):
\[
A = \frac{(-1)^2 - (-1) + 1}{-1 - 1} = \frac{3}{-2} = -1.5
\]
(Không phải là số nguyên)
### Kết quả:
- **Điều kiện để \( A > 1 \)** là \( x \neq 1 \).
- **Các giá trị nguyên của \( x \) để \( A \) là số nguyên** là \( x = 0 \) và \( x = 2 \).
Vì \(\dfrac{1}{3}\ne\dfrac{2}{2}\)
nên hệ luôn có nghiệm duy nhất
\(\left\{{}\begin{matrix}x+2y=7\\3x+2y=2m+1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3x+2y-x-2y=2m+1-7\\x+2y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=2m-6\\2y=7-x\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=m-3\\2y=7-m+3=-m+10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=m-3\\y=-0,5m+5\end{matrix}\right.\)
x+2=y
=>-0,5m+5=m-3+2=m-1
=>-1,5m=-6
=>m=4
Số hạng thứ 24 là 315+23x5=430
Tổng của dãy số là \(\left(430+315\right)\times\dfrac{24}{2}=8940\)
3: \(564\left(\dfrac{12+\dfrac{12}{7}-\dfrac{12}{25}-\dfrac{12}{71}}{4+\dfrac{4}{7}-\dfrac{4}{25}-\dfrac{4}{71}}:\dfrac{3+\dfrac{3}{13}+\dfrac{3}{19}+\dfrac{3}{101}}{5+\dfrac{5}{13}+\dfrac{5}{19}+\dfrac{5}{101}}\right)\)
\(=564\left(\dfrac{12\left(1+\dfrac{1}{7}-\dfrac{1}{25}-\dfrac{1}{71}\right)}{4\left(1+\dfrac{1}{7}-\dfrac{1}{25}-\dfrac{1}{71}\right)}:\dfrac{3\left(1+\dfrac{1}{13}+\dfrac{1}{19}+\dfrac{1}{101}\right)}{5\left(1+\dfrac{1}{13}+\dfrac{1}{19}+\dfrac{1}{101}\right)}\right)\)
\(=564:\left(3\cdot\dfrac{5}{3}\right)=564\cdot5=2820\)
4: \(\dfrac{155-\dfrac{10}{7}-\dfrac{5}{11}+\dfrac{5}{23}}{402-\dfrac{26}{7}-\dfrac{13}{11}+\dfrac{13}{23}}+\dfrac{\dfrac{3}{5}+\dfrac{3}{13}-0,9}{\dfrac{7}{91}+0,2-\dfrac{3}{10}}\)
\(=\dfrac{5\left(31-\dfrac{2}{7}-\dfrac{1}{11}+\dfrac{1}{23}\right)}{13\left(31-\dfrac{2}{7}-\dfrac{1}{11}+\dfrac{1}{23}\right)}+\dfrac{\dfrac{3}{5}+\dfrac{3}{13}-\dfrac{9}{10}}{\dfrac{1}{13}+\dfrac{1}{5}-\dfrac{1}{10}}\)
\(=\dfrac{5}{13}+\dfrac{3\left(\dfrac{1}{5}+\dfrac{1}{13}-\dfrac{1}{10}\right)}{\dfrac{1}{5}+\dfrac{1}{13}-\dfrac{1}{10}}=\dfrac{5}{13}+3=\dfrac{44}{13}\)
5: \(\dfrac{0,375-0,3+\dfrac{3}{11}+\dfrac{3}{12}}{-0,625+0,5-\dfrac{5}{11}-\dfrac{5}{12}}+\dfrac{1,5+1-0,75}{2,5+\dfrac{5}{3}-1,25}\)
\(=-\dfrac{\dfrac{3}{8}-\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}}{\dfrac{5}{8}-\dfrac{5}{10}+\dfrac{5}{11}+\dfrac{5}{12}}+\dfrac{\dfrac{3}{2}+\dfrac{3}{3}-\dfrac{3}{4}}{\dfrac{5}{2}+\dfrac{5}{3}-\dfrac{5}{4}}\)
\(=-\dfrac{3\left(\dfrac{1}{8}-\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}\right)}{5\left(\dfrac{1}{8}-\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}\right)}+\dfrac{3\left(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}\right)}{5\left(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}\right)}\)
\(=-\dfrac{3}{5}+\dfrac{3}{5}=0\)