Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Vì ab = cd nên \(\dfrac{a}{c}=\dfrac{d}{b}\)
Đặt \(\dfrac{a}{c}=\dfrac{d}{b}=k\) (k > 0)
=> a = ck ; d = bk
Khi đó P = an + bn + cn + dn
= (ck)n + bn + cn + (bk)n
= cn.kn + cn + bn + bn.kn
= cn(kn + 1) + bn(kn + 1)
= (cn + bn).(kn + 1)
Dễ thấy cn + bn > 1 ; kn + 1 > 1
=> P là hợp số

ko có thời giân để hỏi đâu8
:))))))))))))))))))))))))))))))))))))))

S = 1 + 1/1! + 1/2! + 1/3! + ... + 1/2001
=2+1/2+......+1/2001
có
1/2=1.2
1/3<1/2.3
......
1/2001<1/2000.2001
1/2! + 1/3! + ... + 1/2001<1/1.2+1/1.3+.....+1/2000.2001
1/2! + 1/3! + ... + 1/2001<1-1/2+1/2-1/3+....+1/2000-1/2001
1/2! + 1/3! + ... + 1/2001<1-1/2001<1
1/2! + 1/3! + ... + 1/2001<1
vậy:1/2! + 1/3! + ... + 1/2001<3 nhớ gửi coin nhé! chúc bạn làm đúng :))

Ta có:
\(\dfrac{1}{4^2}< \dfrac{1}{3.4}\)
\(\dfrac{1}{5^2}< \dfrac{1}{4.5}\)
\(\dfrac{1}{6^2}< \dfrac{1}{5.6}\)
\(...\)
\(\dfrac{1}{100^2}< \dfrac{1}{99.100}\) \(\left(1\right)\)
\(\Rightarrow\dfrac{1}{4^2}+\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}< \dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\)
Đặt \(A=\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\)
\(=\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=\dfrac{1}{3}-\dfrac{1}{100}\)\(< \dfrac{1}{3}\) \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\)
\(\Rightarrow\dfrac{1}{4^2}+\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}< \dfrac{1}{3}\)
