K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3

2 tháng 3

loading...  

Gọi E là trung điểm của BC

∆ABC có:

E là trung điểm của BC

M là trung điểm của AC (gt)

⇒ EM là đường trung bình của ∆ABC

⇒ EM // AB (1)

∆BCD có:

E là trung điểm của BC

N là trung điểm của BD (gt)

⇒ EN là đường trung bình của ∆BCD

⇒ EN // CD (2)

Do ABCD là hình thang

⇒ AB // CD (3)

Từ (1), (2), (3) và theo tiên đề Ơclit ⇒ MN // AB // CD

a: Trong 1 giờ, vòi 1 chảy được \(\dfrac{1}{x}\left(bể\right)\)

Trong 1 giờ, vòi 2 chảy được \(\dfrac{1}{y}\left(bể\right)\)

Trong 1 giờ, hai vòi chảy được \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{x+y}{xy}\left(bể\right)\)

=>Hai vòi cần \(1:\dfrac{x+y}{xy}=\dfrac{xy}{x+y}\left(giờ\right)\) để chảy đầy bể

b: Để hai vòi cùng chảy đầy bể thì hai vòi cần:

\(\dfrac{2\cdot4}{4+2}=\dfrac{8}{6}=\dfrac{4}{3}\left(giờ\right)\)

a) 1: (1/x + 1/y) (h)

b) 1: (1/4 + 1/2) = 4/3 (h)

a: Khối lượng dâu tây mua được trong ngày hôm qua là \(\dfrac{y}{x}\left(kg\right)\)

Khối lượng dâu tây mua được trong ngày hôm nay là  \(\dfrac{y}{x-15}\left(kg\right)\)

Khối lượng dâu tây mua được nhiều hơn là:

\(\dfrac{y}{x-15}-\dfrac{y}{x}=\dfrac{yx-yx+15y}{x\left(x-15\right)}=\dfrac{15y}{x\left(x-15\right)}\left(kg\right)\)

b: Hôm nay mua được nhiều hơn hôm qua khối lượng dâu tây là:

\(\dfrac{15\cdot1150}{115\left(115-15\right)}=1,5\left(kg\right)\)

a: ta có: AK\(\perp\)BC

NM\(\perp\)BC

Do đó: AK//NM

Xét ΔDKA vuông tại K và ΔDMN vuông tại M có

DA=DN

\(\widehat{DÁK}=\widehat{DNM}\)(hai góc so le trong, AK//MN)

Do đó: ΔDKA=ΔDMN

=>DK=DM và AK=MN

Xét tứ giác AKNM có

AK//MN

AK=MN

Do đó: AKNM là hình bình hành

b: Xét ΔAEN có

K,D lần lượt là trung điểm của AE,AN

=>KD là đường trung bình của ΔAEN

=>KD//EN

=>EN//BC

Ta có: AK//MN

mà E\(\in\)AK

nên AE//MN

Xét tứ giác KENM có

KE//NM

KM//EN

Do đó: KENM là hình bình hành

Hình bình hành KENM có \(\widehat{MKE}=90^0\)

nên KENM là hình chữ nhật

c: Xét tứ giác ABNC có

D là trung điểm chung của AN và BC

=>ABNC là hình bình hành

=>BN=AC

Xét ΔCAE có

CK là đường cao

CK là đường trung tuyến

Do đó: ΔCAE cân tại C

=>CA=CE

mà CA=BN

nên CE=BN

Xét tứ giác BCNE có NE//BC

nên BCNE là hình thang

Hình thang BCNE có BN=CE

nên BCNE là hình thang cân

d: Ta có: ΔAEN vuông tại E

mà ED là đường trung tuyến

nên DE=DN

=>ΔDEN cân tại D

1 tháng 3

Bài 2:

a) ĐKXĐ: \(\left\{{}\begin{matrix}x+3\ne0\\x-3\ne0\\9-x^2\ne0\end{matrix}\right.\Leftrightarrow x\ne\pm3\)

b) \(A=\dfrac{3}{x+3}+\dfrac{1}{x-3}-\dfrac{18}{9-x^2}\)

\(A=\dfrac{3}{x+3}+\dfrac{1}{x-3}+\dfrac{18}{x^2-9}\)

\(A=\dfrac{3\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}+\dfrac{x+3}{\left(x+3\right)\left(x-3\right)}+\dfrac{18}{\left(x+3\right)\left(x-3\right)}\)

\(A=\dfrac{3x-9+x+3+18}{\left(x+3\right)\left(x-3\right)}\)

\(A=\dfrac{4x+12}{\left(x+3\right)\left(x-3\right)}\)

\(A=\dfrac{4\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}\)

\(A=\dfrac{4}{x-3}\) 

c) Thay `x=-1` vào A ta có:

\(A=\dfrac{4}{-1-3}=\dfrac{4}{-4}=-1\)

d) `A=-4` khi: \(\dfrac{4}{x-3}=-4\)

\(\Leftrightarrow x-3=-1\)

\(\Leftrightarrow x=2\left(tm\right)\)

Bài 1:

a: ĐKXĐ: x<>3

\(\dfrac{9}{x-3}+\dfrac{3x}{3-x}\)

\(=\dfrac{9}{x-3}-\dfrac{3x}{x-3}=\dfrac{9-3x}{x-3}\)

\(=\dfrac{-3\left(x-3\right)}{x-3}=-3\)

b: \(\dfrac{5}{x+5}+\dfrac{-4}{x+4}\)

\(=\dfrac{5\left(x+4\right)-4\left(x+5\right)}{\left(x+5\right)\left(x+4\right)}\)

\(=\dfrac{5x+20-4x-20}{\left(x+5\right)\left(x+4\right)}=\dfrac{x}{\left(x+5\right)\left(x+4\right)}\)

c: \(\dfrac{x+5}{2x-3}-\dfrac{2x-7}{3-2x}-\dfrac{x+4}{3-2x}\)

\(=\dfrac{x+5}{2x-3}+\dfrac{2x-7}{2x-3}+\dfrac{x+4}{2x-3}\)

\(=\dfrac{x+5+2x-7+x+4}{2x-3}\)

\(=\dfrac{4x+2}{2x-3}\)

d: \(\dfrac{x^2-y^2}{10x^3y}:\dfrac{x-y}{5xy}\)

\(=\dfrac{\left(x-y\right)\left(x+y\right)}{10x^3y}\cdot\dfrac{5xy}{x-y}\)

\(=\dfrac{x+y}{1}\cdot\dfrac{5xy}{10x^3y}\)

\(=\dfrac{x+y}{2x^2}\)

e: \(\dfrac{2x^2-20x+50}{3x+3}\cdot\dfrac{x^2-1}{4\left(x-5\right)^3}\)

\(=\dfrac{2\left(x^2-10x+25\right)}{3\left(x+1\right)}\cdot\dfrac{\left(x+1\right)\left(x-1\right)}{4\left(x-5\right)^3}\)

\(=\dfrac{2\left(x-5\right)^2}{4\left(x-5\right)^3}\cdot\dfrac{x-1}{3}\)

\(=\dfrac{x-1}{3\cdot2\left(x-5\right)}=\dfrac{x-1}{6x-30}\)

f: \(\dfrac{x-2}{x+1}:\dfrac{x^2-5x+6}{x^2-2x-3}\)

\(=\dfrac{x-2}{x+1}:\dfrac{\left(x-2\right)\left(x-3\right)}{\left(x-3\right)\left(x+1\right)}\)

\(=\dfrac{x-2}{x+1}\cdot\dfrac{\left(x+1\right)}{x-2}=1\)

g: \(\dfrac{x}{x-2y}+\dfrac{x}{x+2y}+\dfrac{4xy}{4y^2-x^2}\)

\(=\dfrac{x}{x-2y}+\dfrac{x}{x+2y}-\dfrac{4xy}{\left(x-2y\right)\left(x+2y\right)}\)

\(=\dfrac{x\left(x+2y\right)+x\left(x-2y\right)-4xy}{\left(x-2y\right)\left(x+2y\right)}\)

\(=\dfrac{2x^2-4xy}{\left(x-2y\right)\left(x+2y\right)}=\dfrac{2x\left(x-2y\right)}{\left(x-2y\right)\left(x+2y\right)}=\dfrac{2x}{x+2y}\)

h: \(\dfrac{1}{x-y}+\dfrac{3xy}{y^3-x^3}+\dfrac{x-y}{x^2+xy+y^2}\)

\(=\dfrac{1}{x-y}-\dfrac{3xy}{\left(x-y\right)\cdot\left(x^2+xy+y^2\right)}+\dfrac{x-y}{x^2+xy+y^2}\)

\(=\dfrac{x^2+xy+y^2-3xy+\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{2\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}=\dfrac{2\left(x-y\right)}{x^2+xy+y^2}\)

i: \(\left(\dfrac{2}{x+2}+\dfrac{2}{x-1}\right)\cdot\dfrac{x^2-4}{4x^2-1}\)

\(=\dfrac{2\left(x-1\right)+2\left(x+2\right)}{\left(x+2\right)\left(x-1\right)}\cdot\dfrac{\left(x-2\right)\left(x+1\right)}{\left(2x-1\right)\left(2x+1\right)}\)

\(=\dfrac{2\left(2x+1\right)}{x-1}\cdot\dfrac{x+1}{\left(2x-1\right)\left(2x+1\right)}=\dfrac{2\left(x+1\right)}{\left(2x-1\right)\left(x-1\right)}\)

j: \(1+\dfrac{x^3-x}{x^2+1}\cdot\left(\dfrac{1}{1-x}-\dfrac{1}{1-x^2}\right)\)

\(=1+\dfrac{x\left(x-1\right)\left(x+1\right)}{x^2+1}\cdot\left(\dfrac{-1}{x-1}+\dfrac{1}{\left(x-1\right)\left(x+1\right)}\right)\)

\(=1+\dfrac{x\left(x-1\right)\left(x+1\right)}{x^2+1}\cdot\dfrac{-x-1+1}{\left(x-1\right)\left(x+1\right)}\)

\(=1+\dfrac{x\left(x-1\right)\left(x+1\right)}{x^2+1}\cdot\dfrac{-x}{\left(x-1\right)\left(x+1\right)}\)

\(=1-\dfrac{x^2}{x^2+1}=\dfrac{1}{x^2+1}\)

loading...

loading...

loading...

loading...

Bài 5:

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

\(\widehat{ABC}\) chung

Do đó: ΔABC~ΔHBA

=>\(\dfrac{AC}{HA}=\dfrac{BC}{BA}\)

=>\(AC\cdot AB=AH\cdot BC\)

b: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=7,5^2-4,5^2=36=6^2\)

=>AC=6(cm)

=>\(AH=\dfrac{4.5\cdot6}{7,5}=\dfrac{27}{7,5}=3,6\left(cm\right)\)

ΔAHB vuông tại H

=>\(AH^2+HB^2=AB^2\)

=>\(HB^2=4,5^2-3,6^2=2,7^2\)

=>HB=2,7(cm)

HB+HC=BC

=>HC+2,7=7,5

=>HC=4,8(cm)

c: Xét ΔBAH có BK là phân giác

nên \(\dfrac{KH}{KA}=\dfrac{BH}{BA}\left(1\right)\)

Xét ΔBAC có BD là phân giác

nên \(\dfrac{AD}{DC}=\dfrac{BA}{BC}\left(2\right)\)

Ta có: ΔBAH~ΔBCA

=>\(\dfrac{BH}{BA}=\dfrac{BA}{BC}\left(3\right)\)

Từ (1),(2),(3) suy ra \(\dfrac{AD}{DC}=\dfrac{HK}{KA}\)

Bài 6:

a: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có

\(\widehat{ABH}=\widehat{BDC}\)(hai góc so le trong, AB//CD)

Do đó: ΔAHB~ΔBCD

b: Xét ΔHDA vuông tại H và ΔADB vuông tại A có

\(\widehat{HDA}\) chung

Do đó: ΔHDA~ΔADB

=>\(\dfrac{DH}{DA}=\dfrac{DA}{DB}\)

=>\(DA^2=DH\cdot DB\)

c: Ta có: ΔADB vuông tại A

=>\(AB^2+AD^2=BD^2\)

=>\(BD^2=3^2+4^2=25=5^2\)

=>BD=5(cm)

=>\(DH=\dfrac{DA^2}{DB}=\dfrac{3^2}{5}=1,8\left(cm\right)\)

ΔDHA vuông tại H

=>\(HD^2+HA^2=DA^2\)

=>\(HA^2+1,8^2=3^2\)

=>\(HA^2=2,4^2\)

=>HA=2,4(cm)

Bài 4:

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

\(\widehat{ABC}\) chung

Do đó: ΔABC~ΔHBA

=>\(\dfrac{BA}{BH}=\dfrac{BC}{BA}\)(1)

=>\(BA^2=BH\cdot BC\)

c: Xét ΔBAH có BI là phân giác

nên \(\dfrac{IA}{IH}=\dfrac{BA}{BH}\left(2\right)\)

Xét ΔBCA có BD là phân giác

nên \(\dfrac{DC}{DA}=\dfrac{BC}{BA}\left(3\right)\)

Từ (1),(2),(3) suy ra \(\dfrac{IA}{IH}=\dfrac{DC}{DA}\)

=>\(\dfrac{IH}{IA}=\dfrac{DA}{DC}\)

c: Xét ΔBAC vuông tại A có \(BA^2+AC^2=BC^2\)

=>\(BC^2=6^2+8^2=100=10^2\)

=>BC=10(cm)

Xét ΔBAC có BD là phân giác

nên \(\dfrac{AD}{AB}=\dfrac{CD}{CB}\)

=>\(\dfrac{AD}{6}=\dfrac{CD}{10}\)

=>\(\dfrac{AD}{3}=\dfrac{CD}{5}\)

mà AD+CD=AC=8cm

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{3}=\dfrac{CD}{5}=\dfrac{AD+CD}{3+5}=\dfrac{8}{8}=1\)

=>\(AD=3\left(cm\right)\)

ΔBAD vuông tại A

=>\(S_{BAD}=\dfrac{1}{2}\cdot BA\cdot AD=\dfrac{1}{2}\cdot6\cdot3=9\left(cm^2\right)\)

ΔBAC vuông tại A

=>\(S_{BAC}=\dfrac{1}{2}\cdot BA\cdot AC=\dfrac{1}{2}\cdot6\cdot8=24\left(cm^2\right)\)

\(S_{BAD}+S_{BDC}=S_{BAC}\)

=>\(S_{BDC}=24-9=15\left(cm^2\right)\)