làm hết phần trắc nghiệm và phần tự luận giúp mk vs
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 6(Đề 4)
a: \(A=\left(\dfrac{3x^2+3}{x^3-1}-\dfrac{x-1}{x^2+x+1}-\dfrac{1}{x-1}\right):\dfrac{2x^2-5x+5}{x-1}\)
\(=\left(\dfrac{3x^2+3}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{x-1}{x^2+x+1}-\dfrac{1}{x-1}\right)\cdot\dfrac{x-1}{2x^2-5x+5}\)
\(=\dfrac{3x^2+3-\left(x-1\right)^2-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{x-1}{2x^2-5x+5}\)
\(=\dfrac{2x^2-x+2-x^2+2x-1}{x^2+x+1}\cdot\dfrac{1}{2x^2-5x+5}\)
\(=\dfrac{x^2+x+1}{x^2+x+1}\cdot\dfrac{1}{2x^2-5x+5}=\dfrac{1}{2x^2-5x+5}\)
b: \(2x^2-5x+5=2\left(x^2-\dfrac{5}{2}x+\dfrac{5}{2}\right)\)
\(=2\left(x^2-2\cdot x\cdot\dfrac{5}{4}+\dfrac{25}{16}+\dfrac{15}{16}\right)\)
\(=2\left(x-\dfrac{5}{4}\right)^2+\dfrac{15}{8}>=\dfrac{15}{8}\forall x\)
=>\(A=\dfrac{1}{2x^2-5x+5}< =1:\dfrac{15}{8}=\dfrac{8}{15}\forall x\)
Dấu '=' xảy ra khi x=5/4
I: Trắc nghiệm:
Câu 1: C
Câu 2: D
Câu 3: B
Câu 4: A
II: tự luận
Câu 5:
a: ĐKXĐ: x<>-2
\(\dfrac{2-x}{x+2}+\dfrac{x}{x+2}=\dfrac{2-x+x}{x+2}=\dfrac{2}{x+2}\)
b: ĐKXĐ: y<>2x
\(\dfrac{2x}{2x-y}+\dfrac{y}{y-2x}\)
\(=\dfrac{2x}{2x-y}-\dfrac{y}{2x-y}\)
\(=\dfrac{2x-y}{2x-y}=1\)
\(\left(d\right)y=\left(3m+1\right)x+m-3\left(m\ne-\dfrac{1}{3}\right)\); \(\left(d'\right)y=-5x+m-1\)
a) Để (d) đồng biến trên R thì:
\(3m+1>0\)
\(\Leftrightarrow3m>-1\)
\(\Leftrightarrow m>-\dfrac{1}{3}\)
b) Để (d) // (d') thì \(3m+1=-5\)
\(\Leftrightarrow3m=-6\)
\(\Leftrightarrow m=-2\)
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
\(\widehat{DAB}\) chung
Do đó: ΔADB~ΔAEC
=>\(\dfrac{AD}{AE}=\dfrac{AB}{AC}\)
=>\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
=>\(AD\cdot AC=AB\cdot AE\)
b: Xét ΔADE và ΔABC có
\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
\(\widehat{DAE}\) chung
Do đó: ΔADE~ΔABC
c: Ta có: ΔADE~ΔABC
=>\(\widehat{AED}=\widehat{ACB}\)
mà \(\widehat{AED}=\widehat{IEB}\)(hai góc đối đỉnh)
nên \(\widehat{IEB}=\widehat{ICD}\)
Xét ΔIEB và ΔICD có
\(\widehat{IEB}=\widehat{ICD}\)
\(\widehat{I}\) chung
Do đó: ΔIEB~ΔICD
=>\(\dfrac{IE}{IC}=\dfrac{IB}{ID}\)
=>\(IE\cdot ID=IB\cdot IC\)
Bài 3:
a: Xét ΔCNB vuông tại N và ΔCMA vuông tại M có
\(\widehat{C}\) chung
Do đó: ΔCNB~ΔCMA
=>\(\dfrac{CN}{CM}=\dfrac{CB}{CA}\)
=>\(CN\cdot CA=CM\cdot CB\)
b: Xét ΔANH vuông tại N và ΔAMC vuông tại M có
\(\widehat{NAH}\) chung
Do đó: ΔANH~ΔAMC
=>\(\dfrac{AN}{AM}=\dfrac{AH}{AC}\)
=>\(AN\cdot AC=AH\cdot AM\)
Bài 2:
Xét ΔOAE và ΔODB có
\(\dfrac{OA}{OD}=\dfrac{OE}{OB}\left(\dfrac{2}{3}=\dfrac{6}{9}\right)\)
\(\widehat{O}\) chung
Do đó: ΔOAE~ΔODB
=>\(\widehat{OEA}=\widehat{OBD}\)
Bài 1:
a: \(AH^2=HB\cdot HC\)
=>\(\dfrac{AH}{HB}=\dfrac{HC}{AH}\)
Xét ΔHAC vuông tại H và ΔHBA vuông tại H có
\(\dfrac{HA}{HB}=\dfrac{HC}{HA}\)
Do đó: ΔHAC~ΔHBA
b: Ta có: ΔHAC~ΔHBA
=>\(\widehat{HAC}=\widehat{HBA}\)
mà \(\widehat{HAC}+\widehat{C}=90^0\)(ΔHAC vuông tại H)
nên \(\widehat{B}+\widehat{C}=90^0\)
=>ΔABC vuông tại A
a) `y=(m-4)x+m` có `a=m-4`
Để là hàm số bậc nhất thì `a≠0`
`=>m-4≠0`
`<=>m≠4`
b) `y=5-3mx` có `a=-3m`
Để là hàm số bậc nhất thì `a≠0`
`=>-3m≠0`
`<=>m≠0`
c) `y=(m-2)x+m` có `a=m-2`
Để là hàm số bậc nhất thì `a≠0`
`=>m-2≠0`
`<=>m≠2`
d) `y=7-5mx` có `a=-5m`
Để là hàm số bậc nhất thì `a≠0`
`=>-5m≠0`
`<=>m≠0`
Lời giải:
Hàm bậc nhất là hàm có dạng $y=ax+b$ với $a,b$ là số thực, $a\neq 0$
Căn cứ vào đó thì:
a. Để $y=(m-4)x+m$ là hsbn thì: $m-4\neq 0$
$\Leftrightarrow m\neq 4$
b.
Để $y=-3mx+5$ là hsbn thì $-3m\neq 0\Leftrightarrow m\neq 0$
c.
Để $y=(m-2)x+m$ là hsbn thì $m-2\neq 0$
$\Leftrightarrow m\neq 2$
d.
Để $y=-5mx+7$ là hsbn thì $-5m\neq 0\Leftrightarrow m\neq 0$
I: Trắc nghiệm
Câu 1: C
Câu 2: A
Câu 3: D
Câu 4: A
II: Tự luận
Câu 5:
a: ĐKXĐ: x<>-1/2
\(\dfrac{5-3x}{2x+1}-\dfrac{-2+5x}{2x+1}\)
\(=\dfrac{5-3x+2-5x}{2x+1}\)
\(=\dfrac{-8x+7}{2x+1}\)
b: ĐKXĐ: x<>-1
\(\dfrac{3}{x+1}-\dfrac{2+3x^2}{x^3+1}\)
\(=\dfrac{3}{x+1}-\dfrac{3x^2+2}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\dfrac{3\left(x^2-x+1\right)-3x^2-2}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\dfrac{-3x+1}{\left(x+1\right)\left(x^2-x+1\right)}\)