Bài 16 (trang 106 SGK Toán 9 Tập 1)
Cho đường tròn (O), điểm A nằm bên trong đường tròn. Vẽ dây BC vuông góc với OA tại A. Vẽ dây EF bất kì đi qua A và không vuông góc với OA. Hãy so sánh độ dài hai dây BC và EF.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Trong đường tròn nhỏ:
AB > CD => OH < OK (định lí 3)
b) Trong đường tròn lớn:
OH < OK => ME > MF (định lí 3)
c) Trong đường tròn lớn:
ME > MF => MH > MK
a) Xét trong đường tròn nhỏ:
Theo định lí 22: trong hai dây của một đường tròn, dây nào lớn hơn thì dây đó gần tâm hơn.
Theo giả thiết AB>CDAB>CD suy ra ABAB gần tâm hơn, tức là OH<OKOH<OK.
b) Xét trong đường tròn lớn:
Theo định lí 22: trong hai dây của một đường tròn, dây nào gần tâm hơn thì dây đó lớn hơn.
Theo câu aa, ta có: OH<OK⇒ME>MFOH<OK⇒ME>MF.
c) Xét trong đường tròn lớn:
Vì OH⊥ME⇒EH=MH=ME2OH⊥ME⇒EH=MH=ME2 (Định lý 2 - trang 103).
Vì OK⊥MF⇒KF=MK=MF2OK⊥MF⇒KF=MK=MF2 (Định lý 2 - trang 103).
Theo câu bb, ta có: ME>MF⇒ME2>MF2⇔MH>MK
Kẻ OM ⊥ AB, ON ⊥ CD.
Ta thấy M, O, N thẳng hàng. Ta có:
Áp dụng định lí Pitago trong tam giác vuông AMO có:
OM2 = OA2 – AM2 = 252 – 202 = 225
=> OM = √225 = 15cm
=> ON = MN – OM = 22 – 15 = 7 (cm)
Áp dụng định lí Pitago trong tam giác vuông CON có:
CN2 = CO2 – ON2 = 252 – 72 = 576
=> CN = √576 = 24
=> CD = 2CN = 48cm
#https://olm.vn/hoi-dap/detail/203085493090.html
Bạn tham khảo ạ
Lời giải chi tiết
a) Nối OE.
Vì HA=HBHA=HB nên OH⊥ABOH⊥AB (ĐLí 2 - trang 103: đường kính đi qua trung điểm của dây không đi qua tâm thì vuông góc với dây đó)
Vì KC=KDKC=KD nên OK⊥CDOK⊥CD. (ĐLí 2 - trang 103: đường kính đi qua trung điểm của dây không đi qua tâm thì vuông góc với dây đó)
Mặt khác, AB=CDAB=CD nên OH=OKOH=OK (hai dây bằng nhau thì cách đều tâm).
Xét ΔHOEΔHOE và ΔKOEΔKOE có:
OH=OKOH=OK
EOEO chung
ˆEHO=ˆEKO=900EHO^=EKO^=900
Suy ra ΔHOE=ΔKOEΔHOE=ΔKOE (cạnh huyền - cạnh góc vuông)
Suy ra EH=EK(1)EH=EK(1)
b) Theo giả thiết, AB=CDAB=CD nên AB2=CD2AB2=CD2 hay AH=KCAH=KC (2)
Từ (1) và (2) suy ra EH+HA=EK+KCEH+HA=EK+KC
hay EA=EC.
a) Nối OE ta có: AB = CD
=> OH = OK (hai dây bằng nhau thì cách đều tâm)
H là trung điểm của AB nên OH ⊥ AB (đường kính đi qua trung điểm của dây không đi qua tâm thì vuông góc với dây đó)
K là trung điểm của CD nên OK ⊥ CD (đường kính đi qua trung điểm của dây không đi qua tâm thì vuông góc với dây đó)
Hai tam giác vuông OEH và OEK có:
OE là cạnh chung
OH = OK
Do đó ΔOEH = ΔOEK (cạnh huyền, cạnh góc vuông)
=> EH = EK (1). (đpcm)
b) Ta có: H là trung điểm của AB nên AH = \(\frac{1}{2}\)AB
K là trung điểm của CD nên CK = \(\frac{1}{2}\)CD
\(AH=\frac{1}{2}AB\)(định lí 1)
Tương tự ta có KC = \(\frac{1}{2}\)CD
Mà AB = CD (gt) suy ra AH = KC (2)
Từ (1) và (2) suy ra:
EA = EH + HA = EK + KC = EC
Vậy EA = EC. (đpcm)
Lời giải chi tiết
a) Kẻ OH⊥ABOH⊥AB tại H
Khi đó, đường tròn (O) có OH là 1 phần đường kính vuông góc với dây AB tại H
Suy ra HH là trung điểm của dây ABAB (Theo định lí 2 - trang 103)
⇒HA=HB=AB2=82=4cm.⇒HA=HB=AB2=82=4cm.
Xét tam giác HOBHOB vuông tại HH, theo định lí Pytago, ta có:
OB2=OH2+HB2⇔OH2=OB2−HB2OB2=OH2+HB2⇔OH2=OB2−HB2
⇔OH2=52−42=25−16=9⇒OH=3(cm)⇔OH2=52−42=25−16=9⇒OH=3(cm).
Vậy khoảng cách từ tâm OO đến dây ABAB là 3cm3cm.
b) Vẽ OK⊥CDOK⊥CD tại K
Tứ giác KOHIKOHI có ba góc vuông (ˆK=ˆH=ˆI=900)(K^=H^=I^=900) nên là hình chữ nhật, suy ra OK=HIOK=HI.
Ta có HI=AH−AI=4−1=3cmHI=AH−AI=4−1=3cm, suy ra OK=3cm.OK=3cm.
Vậy OH=OK=3cm.OH=OK=3cm.
Hai dây ABAB và CDCD cách đều tâm nên chúng bằng nhau.
Do đó AB=CD.
Lời giải chi tiết
a) Kẻ OH⊥ABOH⊥AB tại H
Khi đó, đường tròn (O) có OH là 1 phần đường kính vuông góc với dây AB tại H
Suy ra HH là trung điểm của dây ABAB (Theo định lí 2 - trang 103)
⇒HA=HB=AB2=82=4cm.⇒HA=HB=AB2=82=4cm.
Xét tam giác HOBHOB vuông tại HH, theo định lí Pytago, ta có:
OB2=OH2+HB2⇔OH2=OB2−HB2OB2=OH2+HB2⇔OH2=OB2−HB2
⇔OH2=52−42=25−16=9⇒OH=3(cm)⇔OH2=52−42=25−16=9⇒OH=3(cm).
Vậy khoảng cách từ tâm OO đến dây ABAB là 3cm3cm.
b) Vẽ OK⊥CDOK⊥CD tại K
Tứ giác KOHIKOHI có ba góc vuông (ˆK=ˆH=ˆI=900)(K^=H^=I^=900) nên là hình chữ nhật, suy ra OK=HIOK=HI.
Ta có HI=AH−AI=4−1=3cmHI=AH−AI=4−1=3cm, suy ra OK=3cm.OK=3cm.
Vậy OH=OK=3cm.OH=OK=3cm.
Hai dây ABAB và CDCD cách đều tâm nên chúng bằng nhau.
Do đó AB=CD.
* Mạng :))) *
#Ninh Nguyễn
Lời giải chi tiết
Vẽ OM⊥CDOM⊥CD
Vì OM là một phần đường kính và CD là dây của đường tròn nên ta có M là trung điểm CD hay MC=MDMC=MD (1) (định lý)
Tứ giác AHKBAHKB có AH⊥HK; BK⊥HK⇒HA//BKAH⊥HK; BK⊥HK⇒HA//BK.
Suy ra tứ giác AHKBAHKB là hình thang.
Xét hình thang AHKBAHKB, ta có:
OM//AH//BKOM//AH//BK (cùng vuông góc với CDCD)
mà AO=BO=AB2AO=BO=AB2
⇒MO⇒MO là đường trung bình của hình thang AHKBAHKB.
⇒MH=MK⇒MH=MK (2)
Từ (1) và (2) ⇒MH−MC=MK−MD⇔CH=DK⇒MH−MC=MK−MD⇔CH=DK (đpcm)
Nhận xét: Kết quả của bài toán trên không thay đổi nếu ta đổi chỗ hai điểm CC và DD cho nhau.
Lời giải chi tiết
a) Gọi OO là trung điểm của BC⇒OB=OC=BC2.BC⇒OB=OC=BC2. (1)
Vì DODO là đường trung tuyến của tam giác vuông DBCDBC.
Theo tính chất trung tuyến ứng với cạnh huyền, ta có:
OD=12BCOD=12BC (2)
Từ (1) và (2) suy ra OD=OB=OC=12BCOD=OB=OC=12BC
Do đó ba điểm B, D, CB, D, C cùng thuộc đường tròn tâm OO bán kính OBOB.
Lập luận tương tự, tam giác BEC vuông tại E có EO là đường trung tuyến ứng với cạnh huyền BC nên OE=OB=OC=12BCOE=OB=OC=12BC
Suy ra ba điểm B, E, CB, E, C cùng thuộc đường tròn tâm OO bán kính OBOB.
Do đó 4 điểm B, C, D, EB, C, D, E cùng thuộc đường tròn (O)(O) đường kính BCBC.
b) Xét đường (O;BC2)(O;BC2), với BCBC là đường kính.
Ta có DEDE là một dây cung không đi qua tâm nên ta có BC>DEBC>DE ( vì trong một đường tròn, dây lớn nhất là đường kính).
a) Gọi \mathrm{M}M là trung điểm của \mathrm{BC}BC.
Ta có EM=\dfrac{1}{2} BC, DM=\dfrac{1}{2} BCEM=21BC,DM=21BC.
Suy ra ME=MB=MC=MDME=MB=MC=MD
do đó B, E, D, CB,E,D,C cùng thuộc đường tròn đường kính BCBC.
b) Trong đường tròn nói trên, DEDE là dây, BCBC là đường kính nên DE<BCDE<BC
giải:
Vẽ OH⊥EFOH⊥EF.
Xét tam giác HOA vuông tại H ta có:
OH<OAOH<OA.
Suy ra EF>BC.EF>BC.
Nhận xét. Trong các dây đi qua một điểm A ở trong đường tròn, dây vuông góc với OA là dây ngắn nhất.
Kẻ OH \perp EFOH⊥EF.
Trong tam giác OHAOHA vuông tại HH, ta có:
OA>OHOA>OH
Suy ra BC<EFBC<EF