Tính giá trị lớn nhất của biểu thức A= \(\dfrac{1}{\left|x+1\right|+\left|x-2022\right|}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
X = {5; 7; 9; 11; 13;...;83}
Xét dãy số: 5; 7; 9;11; 13;...; 83
Dãy số trên là dãy số cách đều có khoảng cách là: 7 - 5 = 2
Phần tử thứ 11 của tập hợp X chính là số hạng thứ 11 của dãy số trên
Áp dụng công thức tính số thứ n của dãy số cách đều:
Stn = số đầu + khoảng cách \(\times\)(n-1)
Số thứ 11 của dãy số trên là: 5 + 2 \(\times\) ( 11 - 1) = 25
Kết luận:
Phần tử đứng thứ 11 tính từ trái qua phải của tập hợp X khi các phần tử của tập hợp X được sắp xếp theo thứ tự từ bé đến lớn là: 25
Viết từ 1 đến 999 thì các số có chữ số ở hàng đơn vị có dạng:
\(\overline{a0}\); \(\overline{bc0}\).
Xét các số có dạng \(\overline{a0}\), \(a\) có 9 cách chọn vậy có 9 số
Xét các số có dạng \(\overline{bc0}\), \(b\) có 9 cách chọn; \(c\) có 10 cách chọn vậy có:
9 \(\times\) 10 = 90 (số)
Các số có chữ số 0 ở hàng chục có dạng: \(\overline{d0e}\)
\(d\) có 9 cách chọn. \(e\) có 10 cách chọn vậy có:
9 \(\times\) 10 = 90 (số)
Từ những lập trên cho thấy viết liên tiếp các số tự nhiên từ 1 đến 999 thì chữ số 0 xuất hiện số lần là:
9 + 90 + 90 = 189 (lần)
Đáp số: 189 lần
A = \(xy^2z^3\) + \(x^2y^3z^4\)+...+\(x^{2014}y^{2015}z^{2016}\)
A \(\times\) \(xyz\) = \(x^2y^3z^4\)+...+\(x^{2014}y^{2015}z^{2016}\) + \(x^{2015}y^{2016}z^{2017}\)
A \(\times\) \(xyz\) - A = \(x^{2015}\)\(y^{2016}\)\(z^{2017}\) - \(xy^2z^3\)
A\(\times\)( \(xyz\) - 1) = \(x^{2015}\)\(y^{2016}z^{2017}\) - \(xy^2z^3\)
A = (\(x^{2015}\) \(y^{2016}\) \(z^{2017}\) - \(xy^2z^3\)) : (\(xyz\) - 1)
Thay \(x\) = -1; \(y\) = -1; \(z\) = -1
A = [(-1)2015.(-1)2016.(-1)2017 - (-1).(-1)2.(-1)3] : {(-1.(-1).(-1) - 1)}
A = [ 1 - 1] : [-1-1]
A = 0: (-2)
A = 0
A = ��2�3xy2z3 + �2�3�4x2y3z4+...+�2014�2015�2016x2014y2015z2016
A ×× ���xyz = �2�3�4x2y3z4+...+�2014�2015�2016x2014y2015z2016 + �2015�2016�2017x2015y2016z2017
A ×× ���xyz - A = �2015x2015�2016y2016�2017z2017 - ��2�3xy2z3
A××( ���xyz - 1) = �2015x2015�2016�2017y2016z2017 - ��2�3xy2z3
A = (�2015x2015 �2016y2016 �2017z2017 - ��2�3xy2z3) : (���xyz - 1)
Thay �x = -1; �y = -1; �z = -1
A = [(-1)2015.(-1)2016.(-1)2017 - (-1).(-1)2.(-1)3] : {(-1.(-1).(-1) - 1)}
A = [ 1 - 1] : [-1-1]
A = 0: (-2)
A = 0
Nhớ tick nha
A = 13 + 23 + 33 + 43 +...+ 1003
Ta có: B = 13 + 23 + 33 + 43 +...+ n3 = ( 1 + 2 + 3 +...+n)2
Thật vậy Với n = 1 ta có: B = 13 = 12 (đúng)
Giả sử B đúng với n = k tức là:13 + 23 + 33 +....+k3 = (1+2+3 +...+k)2
Ta cần chứng minh B đúng với n = k + 1.
⇔13 + 23 + 33 + ...+ k3 + (k+1)3 = (1+2+3+...+k+k+1)2
Ta có:
B = 13 + 23 + 33 +....+ k3 + (k+1)3
B = (1+2+3+...+k)2 + (k + 1)3
B = {(k +1)k:2}2 + (k+1)3 = (k+1)2{ \(\dfrac{k^2}{4}\) + k + 1} =(k+1)2(k2+4k+4)2: 4
B = (k+1)2(k2+2k + 2k + 4): 4 = (k+1)2{(k(k+2) + 2(k+2)}: 4
B = (k+1)2(k+2)2:4 = {(k+1)(k+2): 2}2
Mặt khác 1 + 2 + 3 + 4 +....+ k + k + 1 = (k+2)(k+1): 2
⇒B = (1+2+3+...+ k+1)2 (đpcm)
Vậy 13 + 23 + 33 + ...+n3 = (1+2+3+...+n)2
Áp dụng công thức trên ta có:
A = 13 + 23 + 33 +43 +...+1003 = (1+2+3+4...+100)2
C = 1 + 2 + 3 + 4 +...+100
Dãy số trên là dãy số cách đều với khoảng cách là 2 - 1 = 1
Số số hạng của dãy số trên là: (100 -1):1 + 1 = 100
Tổng dãy số trên là: C = (100 +1)\(\times\) 100 : 2 = 5050
A = 50502
A = 13 + 23 + 33 + 43 +...+ 1003
Ta có: B = 13 + 23 + 33 + 43 +...+ n3 = ( 1 + 2 + 3 +...+n)2
Thật vậy Với n = 1 ta có: B = 13 = 12 (đúng)
Giả sử B đúng với n = k tức là:13 + 23 + 33 +....+k3 = (1+2+3 +...+k)2
Ta cần chứng minh B đúng với n = k + 1.
⇔13 + 23 + 33 + ...+ k3 + (k+1)3 = (1+2+3+...+k+k+1)2
Ta có:
B = 13 + 23 + 33 +....+ k3 + (k+1)3
B = (1+2+3+...+k)2 + (k + 1)3
B = {(k +1)k:2}2 + (k+1)3 = (k+1)2{ �244k2 + k + 1} =(k+1)2(k2+4k+4)2: 4
B = (k+1)2(k2+2k + 2k + 4): 4 = (k+1)2{(k(k+2) + 2(k+2)}: 4
B = (k+1)2(k+2)2:4 = {(k+1)(k+2): 2}2
Mặt khác 1 + 2 + 3 + 4 +....+ k + k + 1 = (k+2)(k+1): 2
⇒B = (1+2+3+...+ k+1)2 (đpcm)
Vậy 13 + 23 + 33 + ...+n3 = (1+2+3+...+n)2
Áp dụng công thức trên ta có:
A = 13 + 23 + 33 +43 +...+1003 = (1+2+3+4...+100)2
C = 1 + 2 + 3 + 4 +...+100
Dãy số trên là dãy số cách đều với khoảng cách là 2 - 1 = 1
Số số hạng của dãy số trên là: (100 -1):1 + 1 = 100
Tổng dãy số trên là: C = (100 +1)×× 100 : 2 = 5050
A = 50502
HT!
A = \(xy^2z^3+x^2y^3z^4\) + \(x^{2014}y^{2015}z^{2016}\)
Thay \(x=\) -1; y = -1; z = -1 vào A ta có:
A = (-1).(-1)2.(-1)3 + (-1)2.(-1)3.(-1)4 + (-1)2014.(-1)2015.(-1)2016
A = (-1).1(-1) + 1.(-1).1 + 1.(-1).1
A = 1 - 1 - 1
A = -1
A = ��2�3+�2�3�4xy2z3+x2y3z4 + �2014�2015�2016x2014y2015z2016
Thay �=x= -1; y = -1; z = -1 vào A ta có:
A = (-1).(-1)2.(-1)3 + (-1)2.(-1)3.(-1)4 + (-1)2014.(-1)2015.(-1)2016
A = (-1).1(-1) + 1.(-1).1 + 1.(-1).1
A = 1 - 1 - 1
A = -1
tick cho mik nha
Gọi tử số và mẫu số lần lượt là a và b
Ta có:b-a=48
a/b=6/10 ⇒ a/6=b/10
Áp dụng tính chất dãy tỉ số bằng nhau
⇒a/6=b/10=(b-a)/(10-6)=48/4=12
Nên:
a=12.6=72
b=12.10=120
A = \(\dfrac{1}{\left|x+1\right|+\left|x-2022\right|}\)
Đặt B = \(\left|x+1\right|+\left|x-2022\right|\)
\(\left|x-2022\right|\) = \(\left|2022-x\right|\) ⇒ B = \(\left|x+1\right|+\left|2022-x\right|\)
B =\(\left|x+1\right|+\left|2022-x\right|\) ≥ \(\left|x+1+2022-x\right|\) = 2023
B(min) = 2023 ⇔ (\(x+1\))(2022-\(x\)) \(\ge\) 0
Lập bảng ta có:
Theo bảng trên ta có: B(min) = 2023 ⇔ -1 ≤ \(x\) ≤ 2022
A = \(\dfrac{1}{\left|x+1\right|+\left|x-2022\right|}\)
Vì A dương nên A(max) ⇔ B(min) ⇔ B = 2023
A(max) = \(\dfrac{1}{2023}\) ⇔ -1 ≤ \(x\) ≤ 2022