Chứng minh rằng :nếu 0<a1<a2<...<a9 thì \(\frac{a1+a2+...+a9}{a3+a6+a9}<3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải :
a, Ta có :
2150 = (23)50 = 850 (1)
Lại có :
3100 = (32)50 = 950 (2)
Từ (1) và (2) => 2150 < 3100 (vì 850 < 950 )
b, Ta có :
224 = (23)8 = 88 (1)
Lại có :
316 = (32)8 = 98 (2)
Từ (1) và (2) => 224 < 316 (vì 88 < 98 )
2150=(23)50=850 < 950=(32)50=3100
224=(23)8=88 < 98 =(32)8=316
S=abc+bca+cab
=(100a+10b+c)+(100b+10c+a)+(100c+10a+b)
=(100a+10a+a)+(100b+10b+b)+(100c+10c+c)
=111a+111b+111c=111.(a+b+c)=3.37.(a+b+c)
Giả sử S là SCP mà 37 là 1 số nguyên tố=>S chia hết cho 37.Nhưng a+b+c ko chia hết cho 37
Vậy S ko là 1 SCP(đpcm)
hoặc cách này cũng đc(cô mk chỉ):
Giả sử S là SCP thì S phải chứa thừa số nguyên tố 37 với số mũ chẵn=>3(a+b+c) chia hết cho 37
do đó a+b+c chia hết cho 37(*)
Nhưng 1<a+b+c<27
=>(*) ko thể xảy ra
Hay S ko là 1 SCP
a/ ta có BC2=522=2704
AB2+AC2=20^2+48^2=400+2304=2704
vì 2704=2704 nên BC2=AB2+AC2 hay tam giác ABC vuông tại A
\(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{10}};\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{10}};...;\frac{1}{\sqrt{9}}>\frac{1}{\sqrt{10}};\frac{1}{\sqrt{10}}=\frac{1}{\sqrt{10}}\)
=>M>10
a) Ta có: góc DAC= góc DAB + góc BAC
góc BAE= góc EAC+ góc CAB
Mà góc DAB= góc EAC=90 độ
=> góc DAC= góc BAE
Xét tam giác DAC và tam giác BAE có:
AD=AB
góc DAC= góc BAE
AC=AE
=> tam giác DAC= tam giác BAE ( c.g.c)
=> DC=BE
Gọi I và H lần lượt là giao điểm của DC với AB và BE
Ta có: góc D+ góc DAH+ góc DHA= góc B+ góc BHI+ góc BIH= 180 độ
Mà góc D= góc B ( tam giác DAC= tam giác BAE) va góc DHA = góc BHI ( hai góc đôi đỉnh)
=> góc DAH= góc BIH
Mà góc DAH=90 độ=> góc BIH=90 độ=> DC vuông góc vs BE
a
Ta có: góc DAB = góc CAE = 90 độ.
Suy ra góc DAC = góc BAE.
Xét tam giác AEB và tam giác ACD có:
AD=AB (gt)
góc BAC= góc BAE (cmt)
AC = AE (gt)
Suy ra tam giác AEB = tam giác ACD(c.g.c)
Suy ra Góc D1 = góc B1
MÀ góc I1= I2(đ đ)
Và góc D1 + góc I1 +góc A1 = góc B1 + góc I2 + góc K1
Suy ra góc A1 = góc K1 + 90 độ
Suy ra DC vuông góc vs BE.
b,
Xét tam giác ADN và tam giác MEN có:
DN=NE (gt)
góc N1= góc N2 ( đ đ )
AN=MN ( gt)
Suy ra tam giác ADN = tam giác MEN (c.g.c)
Suy ra DA=ME Mà DA = AB ( gt) suy ra ME=AB
Ta có;góc DAB + góc EAC = 180 độ
Suy ra Góc A1 + góc A2 =180 độ ( 1 )
Mặt khác tam giác ADN = tam giác MEN suy ra góc E1 = góc D1
Suy ra ME song song vs AD ( 2 góc SLT)
Suy ra góc MEA + góc A2 =180 độ ( TCP ) ( 2 )
Từ 1 và 2 suy ra góc MEA = góc A1
và ME = AB (gt) ; AE = AC (cmt)
Suy ra Tam giác AME = Tam giác CBA ( c.g.c)
Giải :
Ta có : a1 < a3 ; a2 < a3
=> a1 + a2 + a3 < a3 + a3 + a3
hay a1 + a2 + a3 < 3.a3 (1)
Lại có : a4 < a6 ; a5 < a6
=> a4 + a5 + a6 < a6 + a6 + a6
hay a4 + a5 + a6 < 3. a6 (2)
Có : a7 < a9 ; a8 < a9
=> a7 + a8 + a9 < a9 + a9 + a9
Hay a7 + a8 + a9 < 3. a9 (3)
Từ (1), (2), và (3),
=>\(\frac{a_1+a_2+a_3+...+a_9}{a_3+a_6+a_9}=\frac{\left(a_1+a_2+a_3\right)+\left(a_4+a_5+a_6\right)+\left(a_7+a_8+a_9\right)}{a_3+a_6+a_9}<\frac{3.a_3+3.a_6+3.a_9}{a_6+a_6+a_9}=3\)