K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3

a: \(\left(x+5\right)\left(x-1\right)=2x\left(x-1\right)\)

=>\(2x\left(x-1\right)-\left(x+5\right)\left(x-1\right)=0\)

=>\(\left(x-1\right)\left(2x-x-5\right)=0\)

=>(x-1)(x-5)=0

=>\(\left[{}\begin{matrix}x=1\\x=5\end{matrix}\right.\)

b: \(3\left(x-1\right)\left(2x-1\right)=5\left(x+8\right)\left(x-1\right)\)

=>\(\left(x-1\right)\left(6x-3\right)-\left(x-1\right)\left(5x+40\right)=0\)

=>\(\left(x-1\right)\left(6x-3-5x-40\right)=0\)

=>(x-1)(x-43)=0

=>\(\left[{}\begin{matrix}x=1\\x=43\end{matrix}\right.\)

c: \(\left(x^2-5x+7\right)^2-\left(2x-5\right)^2=0\)

=>\(\left(x^2-5x+7-2x+5\right)\left(x^2-5x+7+2x-5\right)=0\)

=>\(\left(x^2-7x+12\right)\left(x^2-3x+2\right)=0\)

=>(x-3)(x-4)(x-1)(x-2)=0

=>\(\left[{}\begin{matrix}x=3\\x=4\\x=1\\x=2\end{matrix}\right.\)

d: \(x^3-5x^2+6x=0\)

=>\(x\left(x^2-5x+6\right)=0\)

=>x(x-2)(x-3)=0

=>\(\left[{}\begin{matrix}x=0\\x=2\\x=3\end{matrix}\right.\)

e: \(\left(x+3\right)\left(x-5\right)+\left(x+3\right)\left(3x-4\right)=0\)

=>(x+3)(x-5+3x-4)=0

=>(x+3)(4x-9)=0

=>\(\left[{}\begin{matrix}x=-3\\x=\dfrac{9}{4}\end{matrix}\right.\)

f: \(\left(x+7\right)\left(3x-1\right)=49-x^2\)

=>\(\left(x+7\right)\left(3x-1\right)+x^2-49=0\)

=>(x+7)(3x-1)+(x-7)(x+7)=0

=>(x+7)(3x-1+x-7)=0

=>(x+7)(4x-8)=0

=>\(\left[{}\begin{matrix}x=-7\\x=2\end{matrix}\right.\)

g: \(3x^2-7x+4=0\)

=>\(3x^2-3x-4x+4=0\)

=>(x-1)(3x-4)=0

=>\(\left[{}\begin{matrix}x=1\\x=\dfrac{4}{3}\end{matrix}\right.\)

h: \(2x^3+3x^2-32x=48\)

=>\(2x^3+3x^2-32x-48=0\)

=>\(x^2\left(2x+3\right)-16\left(2x+3\right)=0\)

=>\(\left(2x+3\right)\left(x^2-16\right)=0\)

=>(2x+3)(x-4)(x+4)=0

=>\(\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=4\\x=-4\end{matrix}\right.\)

18 tháng 3 2024

a) (x + 5)(x - 1) = 2x(x - 1)

(x + 5)(x - 1) - 2x(x - 1) = 0

(x - 1)(x + 5 - 2x) = 0

(x - 1)(5 - x) = 0

x - 1 = 0 hoặc 5 - x = 0

*) x - 1 = 0

x = 1

*) 5 - x = 0

x = 5

Vậy S = {1; 5}

b) 3(x - 1)(2x - 1) = 5(x + 8)(x - 1)

(x - 1)(6x - 3) = (5x + 40)(x - 1)

(x - 1)(6x - 3) - (5x + 40)(x - 1) = 0

(x - 1)(6x - 3 - 5x - 40) = 0

(x - 1)(x - 43) = 0

x - 1 = 0 hoặc x - 43 = 0

*) x - 1 = 0

x = 1

*) x - 43 = 0

x = 43

Vậy S = {1; 43}

c) (x² - 5x + 7)² - (2x - 5)² = 0

(x² - 5x + 7 - 2x + 5)(x² - 5x + 7 + 2x - 5) = 0

(x² - 7x + 12)(x² - 3x + 2) = 0

x² - 7x + 12 = 0 hoặc x² - 3x + 2 = 0

*) x² - 7x + 12 = 0

x² - 3x - 4x + 12 = 0

(x² - 3x) - (4x + 12) = 0

x(x - 3) - 4(x - 3) = 0

(x - 3)(x - 4) = 0

x - 3 = 0 hoặc x - 4 = 0

+) x - 3 = 0

x = 3

+) x - 4 = 0

x = 4

*) x² - 3x + 2 = 0

x² - x - 2x + 2 = 0

(x² - x) - (2x - 2) = 0

x(x - 1) - 2(x - 1) = 0

(x - 1)(x - 2) = 0

x - 1 = 0 hoặc x - 2 = 0

+) x - 1 = 0

x = 1

+) x - 2 = 0

x = 2

Vậy S = {1; 2; 3; 4}

d) x³ - 5x² + 6x = 0

x(x² - 5x + 6) = 0

x = 0 hoặc x² - 5x + 6 = 0

*) x² - 5x + 6 = 0

x² - 2x - 3x + 6 = 0

(x² - 2x) - (3x - 6) = 0

x(x - 2) - 3(x - 2) = 0

(x - 2)(x - 3) = 0

x - 2 = 0 hoặc x - 3 = 0

+) x - 2 = 0

x = 2

+) x - 3 = 0

x = 3

Vậy S = {0; 2; 3}

a: Xét ΔAHB vuông tại H và ΔCAB vuông tại A có

\(\widehat{ABH}\) chung

Do đó: ΔAHB~ΔCAB

b: Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=6^2+8^2=100=10^2\)

=>BC=10(cm)

ΔAHB~ΔCAB

=>\(\dfrac{AH}{CA}=\dfrac{HB}{AB}=\dfrac{AB}{CB}\)

=>\(\dfrac{AH}{8}=\dfrac{HB}{6}=\dfrac{6}{10}=\dfrac{3}{5}\)

=>\(AH=8\cdot\dfrac{3}{5}=4,8\left(cm\right);HB=6\cdot\dfrac{3}{5}=\dfrac{18}{5}=3,6\left(cm\right)\)

c: Ta có: \(\widehat{BHE}+\widehat{DHE}+\widehat{DHC}=180^0\)

=>\(\widehat{BHE}+\widehat{DHC}+90^0=180^0\)

=>\(\widehat{BHE}+\widehat{DHC}=90^0\)

mà \(\widehat{DHC}+\widehat{DHA}=\widehat{CHA}=90^0\)

nên \(\widehat{BHE}=\widehat{DHA}\)

Xét ΔBHE và ΔAHD có

\(\widehat{BHE}=\widehat{DHA}\)

\(\widehat{HBE}=\widehat{HAD}\left(=90^0-\widehat{HAB}\right)\)

Do đó: ΔBHE~ΔAHD

1

a: Thay x=3 vào A, ta được:

\(A=\dfrac{3^2}{3+3}=\dfrac{9}{6}=\dfrac{3}{2}\)

b: \(B=\dfrac{3x}{x-1}-\dfrac{2x}{x+1}+\dfrac{x-3}{1-x^2}\)

\(=\dfrac{3x}{x-1}-\dfrac{2x}{x+1}-\dfrac{x-3}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{3x\left(x+1\right)-2x\left(x-1\right)-x+3}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{3x^2+3x-2x^2+2x-x+3}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x^2+4x+3}{\left(x-1\right)\left(x+1\right)}=\dfrac{\left(x+3\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{x+3}{x-1}\)

c: \(P=A\cdot B=\dfrac{x+3}{x-1}\cdot\dfrac{x^2}{x+3}=\dfrac{x^2}{x-1}\)

Để P=4 thì \(\dfrac{x^2}{x-1}=4\)

=>\(x^2=4\left(x-1\right)=4x-4\)

=>\(x^2-4x+4=0\)

=>(x-2)^2=0

=>x-2=0

=>x=2(nhận)

2

a: Xét ΔBDE vuông tại E và ΔBCD vuông tại D có

\(\widehat{DBE}\) chung

Do đó: ΔBDE~ΔBCD

b: Xét ΔBFD vuông tại F và ΔBDA vuông tại D có

\(\widehat{FBD}\) chung

Do đó: ΔBFD~ΔBDA

=>\(\dfrac{BF}{BD}=\dfrac{BD}{BA}\)

=>\(BD^2=BF\cdot BA\)

c: Ta có: ΔBDE~ΔBCD

=>\(\dfrac{BD}{BC}=\dfrac{BE}{BD}\)

=>\(BD^2=BE\cdot BC\)

=>\(BF\cdot BA=BE\cdot BC\)

=>\(\dfrac{BF}{BC}=\dfrac{BE}{BA}\)

Xét ΔBFE và ΔBCA có

\(\dfrac{BF}{BC}=\dfrac{BE}{BA}\)

\(\widehat{FBE}\) chung

Do đó: ΔBFE~ΔBCA

=>\(\widehat{BFE}=\widehat{BCA}\)

18 tháng 3 2024

loading...  

a) Xét hai tam giác vuông: ∆BDE và ∆BCD có:

∠B chung

⇒ ∆BDE ∽ ∆BCD (g-g)

b) Xét hai tam giác vuông: ∆BFD và ∆BDA có:

∠B chung

⇒ ∆BFD ∽ ∆BDA (g-g)

⇒ BF/BD = BD/BA

⇒ BD² = BF.BA

c) Do ∆BDE ∽ ∆BCD (cmt)

⇒ BD/BC = BE/BD

⇒ BD² = BE.BC

Mà BD² = BF.BA (cmt)

⇒ BF.BA = BE.BC

⇒ BF/BC = BE/BA

Xét ∆BFE và ∆BCA có:

BA/BC = BE/BA (cmt)

∠B chung

⇒ ∆BFE ∽ ∆BCA (c-g-c)

d) Em xem lại đề, đề thiếu vì hình bị mất

1

1: Xét ΔCEH vuông tại E và ΔCAB vuông tại A có

\(\widehat{ECH}\) chung

Do đó: ΔCEH~ΔCAB

2: Xét tứ giác AHEB có \(\widehat{HAB}+\widehat{HEB}=90^0+90^0=180^0\)

nên AHEB là tứ giác nội tiếp

=>\(\widehat{HBC}=\widehat{EAC}\)

3: 

Xét ΔIBA và ΔIEH có

\(\widehat{IBA}=\widehat{IEH}\)(ABEH là tứ giác nội tiếp)

\(\widehat{BIA}=\widehat{EIH}\)(hai góc đối đỉnh)

Do đó; ΔIBA~ΔIEH

=>\(\dfrac{AB}{EH}=\dfrac{AI}{HI}\)

=>\(AB\cdot HI=AI\cdot HE\)

1

a: \(C=\left(\dfrac{2+x}{2-x}+\dfrac{4x^2}{4-x^2}-\dfrac{2-x}{2+x}\right):\dfrac{x^2-x}{2x-x^2}\)

\(=\left(\dfrac{-\left(x+2\right)}{x-2}-\dfrac{4x^2}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{x+2}\right)\cdot\dfrac{x\left(2-x\right)}{x\left(x-1\right)}\)

\(=\dfrac{-\left(x+2\right)^2-4x^2+\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{2-x}{x-1}\)

\(=\dfrac{-x^2-4x-4-4x^2+x^2-4x+4}{\left(x+2\right)}\cdot\dfrac{-1}{x-1}\)

\(=\dfrac{-4x^2-8x}{\left(x+2\right)\left(x-1\right)}\cdot\left(-1\right)=\dfrac{4x\left(x+2\right)}{\left(x+2\right)\left(x-1\right)}=\dfrac{4x}{x-1}\)

b: Để C=1 thì 4x=x-1

=>3x=-1

=>\(x=-\dfrac{1}{3}\left(nhận\right)\)

c: Để C là số nguyên thì \(4x⋮x-1\)

=>\(4x-4+4⋮x-1\)

=>\(4⋮x-1\)

=>\(x-1\in\left\{1;-1;2;-2;4;-4\right\}\)

=>\(x\in\left\{2;0;3;-1;5;-3\right\}\)

Kết hợp ĐKXĐ, ta được: \(x\in\left\{3;-1;5;-3\right\}\)

 

a: Ta có;ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2+12^2=20^2\)

=>\(AC^2=20^2-12^2=256=16^2\)

=>AC=16(cm)

Xét ΔBAC có BM là phân giác

nên \(\dfrac{AM}{AB}=\dfrac{CM}{CB}\)

=>\(\dfrac{AM}{12}=\dfrac{CM}{20}\)

=>\(\dfrac{AM}{3}=\dfrac{CM}{5}\)

mà AM+CM=AC=16cm

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AM}{3}=\dfrac{CM}{5}=\dfrac{AM+CM}{3+5}=\dfrac{16}{8}=2\)

=>\(CM=2\cdot5=10\left(cm\right)\)

b: Ta có: MI\(\perp\)BC

AK\(\perp\)BC

Do đó: MI//AK

Xét ΔCAK có MI//AK

nên \(\dfrac{CI}{IK}=\dfrac{CM}{MA}\)

mà \(\dfrac{CM}{MA}=\dfrac{CB}{BA}\)

nên \(\dfrac{CI}{IK}=\dfrac{CB}{BA}\)

=>\(AB\cdot IC=IK\cdot BC\)

a: Đặt F=C*x+b

Thay x=0 và F=32 vào F=Cx+b, ta được:

\(0\cdot C+b=32\)

=>b=32

=>F=Cx+32

Thay x=1 và y=32+1,8=33,8 vào F=x*C+32, ta được:

\(x\cdot1+32=33,8\)

=>x+32=33,8

=>x=1,8

Vậy: F=1,8C+32

b: Nước sôi ở nhiệt độ 100 độ C

=>\(F=1,8\cdot100+32=180+32=212^0F\)

a: Ta có; ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=6^2+8^2=100=10^2\)

=>BC=10(cm)

Xét ΔBAC có BD là phân giác

nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)

=>\(\dfrac{AD}{6}=\dfrac{CD}{10}\)

=>\(\dfrac{AD}{3}=\dfrac{CD}{5}\)

mà AD+CD=AC=8cm

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{3}=\dfrac{CD}{5}=\dfrac{AD+CD}{3+5}=\dfrac{8}{8}=1\)

=>\(AD=3\cdot1=3\left(cm\right)\)

b: Vì BD là phân giác trong tại B của ΔABC

và BD\(\perp\)BE

nênBE là phân giác ngoài tại B của ΔABC

Xét ΔABC có BE là phân giác ngoài tại B

nên \(\dfrac{EA}{EC}=\dfrac{AB}{BC}\)

mà \(\dfrac{AB}{BC}=\dfrac{DA}{DC}\)

nên \(\dfrac{EA}{EC}=\dfrac{DA}{DC}\)

=>\(EA\cdot DC=DA\cdot EC\)

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

AB=AC

\(\widehat{BAD}\) chung

Do đó: ΔADB=ΔAEC

=>AD=AE và BD=CE

Xét ΔAEM vuông tại E và ΔADM vuông tại D có

AM chung

AE=AD

Do đó: ΔAEM=ΔADM

=>ME=MD

b: ĐƯờng thẳng vuông góc với CE ở đâu vậy bạn?

c: Xét ΔMKE vuông tại K và ΔMHD vuông tại H có

ME=MD

\(\widehat{KME}=\widehat{HMD}\)(hai góc đối đỉnh)

Do đó: ΔMKE=ΔMHD

=>EK=HD và MK=MH

Xét ΔMKP vuông tại K và ΔMHP vuông tại H có

MK=MH

MP chung

Do đó: ΔMKP=ΔMHP

=>PH=PK

Ta có: ME+MC=EC

MD+MB=DB

mà ME=MD và EC=DB

nên MC=MB

Ta có: MK+KB=MB

MH+HC=MC

mà MK=MH và MB=MC

nên KB=HC

Xét ΔPKB vuông tại K và ΔPHC vuông tại H có

PK=PH

KB=HC

Do đó: ΔPKB=ΔPHC

=>PB=PC

=>P nằm trên đường trung trực của BC(1)

Ta có: MB=MC

=>M nằm trên đường trung trực của BC(2)

ta có: AB=AC

=>A nằm trên đường trung trực của BC(3)

Từ (1),(2),(3) suy ra A,M,P thẳng hàng