Giải bài toán băng cách lập phương trình hoặc hệ phương trình:
Một mảnh vườn hình chữ nhật có chu vi là $124 m$. Nếu tăng chiều dài thêm $5 m$ và chiều rộng thêm $3 m$ thì diện tích mảnh vườn tăng thêm $255 m^{2}$. Tính chiều dài và chiều rộng của mảnh vườn ban đầu?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{1}{a^2+b^2}+\frac{2}{ab}+4ab\)
\(=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{4ab}+4ab+\frac{5}{4ab}\)
\(\ge\frac{4}{\left(a+b\right)^2}+2\sqrt{\frac{1}{4ab}.4ab}+\frac{5}{4ab}\)
( Nếu đi thi thì sẽ phải chứng minh \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) cái này nhân chéo và cô si là xong )
Ta có BĐT phụ: \(\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)( đúng )
\(\Rightarrow M\ge\frac{4}{1}+2+5=11\)
Dấu "=" xảy ra <=> a=b=1/2
Vậy ...
a) Khi m = 2 thì: \(\hept{\begin{cases}y=x^2\\y=2x+3\end{cases}}\)
Hoành độ giao điểm (P) và (d) là nghiệm của PT: \(x^2=2x+3\Leftrightarrow x^2-2x-3=0\Leftrightarrow\left(x+1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\Rightarrow y=1\\x=3\Rightarrow y=9\end{cases}}\)
Vậy tọa độ giao điểm của (P) và (d) là \(\left(-1;1\right)\) và \(\left(3;9\right)\)
b) Hoành độ giao điểm của (P) và (d) là nghiệm của PT:
\(x^2=mx+3\Leftrightarrow x^2-mx-3=0\)
Vì \(ac=1\cdot\left(-3\right)< 0\) => PT luôn có 2 nghiệm phân biệt
Theo hệ thức viet ta có: \(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=-3\end{cases}}\)
Mà \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{3}{2}\Leftrightarrow\frac{x_1+x_2}{x_1x_2}=\frac{3}{2}\Leftrightarrow\frac{-m}{3}=\frac{3}{2}\Rightarrow m=-\frac{9}{2}\)
Vậy \(m=-\frac{9}{2}\)
đk: \(y\ge1\)
Ta có: \(\hept{\begin{cases}2\left(x+2\right)-\sqrt{y-1}=6\\5\left(x+2\right)-2\sqrt{y-1}=16\end{cases}}\Leftrightarrow\hept{\begin{cases}4\left(x+2\right)-2\sqrt{y-1}=12\\5\left(x+2\right)-2\sqrt{y-1}=16\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+2=4\\2\left(x+2\right)-\sqrt{y-1}=6\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\\sqrt{y-1}=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=2\\y-1=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=5\end{cases}}\)
Vậy \(\hept{\begin{cases}x=2\\y=5\end{cases}}\)
Bán kính đường tròn đó là:
\(R=\frac{d}{2}=\frac{1,2}{2}=0,6\left(m\right)\)
Diện tích mặt bàn đó là:
\(S=R^2\pi=0,6^2\cdot\pi\approx1,13\left(m^2\right)\)
gọi AB,BC thứ tự là chiều dài và chiều rộng của hcn
diện tích hcn là:AB.BC
vì sau khi tăng chiều dài 5m, chiều rộng 3m thì S tăng thêm 255 m2 nên ta có phương trình
(AB+5).(BC+3)-AB.BC=255
<=>AB.BC+3.AB+5.BC+15-AB.BC=255
<=>3.AB+5.BC=240(1)
mà AB+BC=62=>3.AB+3.BC=186(2)
trừ cả 2 vế của (1) và (2) ta được
3.AB+5.BC-3.AB-3.BC=240-186
<=>2.BC=54<=>BC=27(m)
=>AB=35(m)
Vậy AB=35m,BC=27m
1) Khi x = 49 thì:
\(A=\frac{4\sqrt{49}}{\sqrt{49}-1}=\frac{4\cdot7}{7-1}=\frac{28}{6}=\frac{14}{3}\)
2) Ta có:
\(B=\frac{1}{\sqrt{x}+1}+\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{2}{x-1}\)
\(B=\frac{\sqrt{x}-1+x+\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(B=\frac{x+2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(B=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
c) \(P=A\div B=\frac{4\sqrt{x}}{\sqrt{x}-1}\div\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{4\sqrt{x}}{\sqrt{x}+1}\)
Ta có: \(P\left(\sqrt{x}+1\right)=x+4+\sqrt{x-4}\)
\(\Leftrightarrow\frac{4\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}=x+4+\sqrt{x-4}\)
\(\Leftrightarrow4\sqrt{x}=x+4+\sqrt{x-4}\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)^2+\sqrt{x-4}=0\)
Mà \(VT\ge0\left(\forall x\ge0,x\ne1\right)\)
\(\Rightarrow\hept{\begin{cases}\left(\sqrt{x}-2\right)^2=0\\\sqrt{x-4}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}\sqrt{x}=2\\x-4=0\end{cases}}\Rightarrow x=4\)
Vậy x = 4
ĐKXĐ: x \(\ge\)1/2
Đặt: \(x+3=a\left(a>0\right)\)
\(\sqrt{2x-1}=b\) (b \(\ge\)0)
=> 3a + b2 = 3x + 9 + 2x - 1 = 5x + 8 => 5x - 1 = b2 + 3a - 9
Do đó, ta có: b2 + 3a - ab - 9 = 0
<=> (b - 3)(b + 3) - a(b - 3) = 0
<=> (b - 3)(b - a + 3) = 0
<=> \(\orbr{\begin{cases}b=3\\b-a+3=0\end{cases}}\)
Với b = 3=> \(\sqrt{2x-1}=3\)=> 2x - 1 = 9 => x = 5 (tm)
với b - a + 3 = 0 => \(\sqrt{2x-1}-x-3+3=0\)
<=> \(\sqrt{2x-1}=x\) (x \(\ge\)1/2)
<=> 2x - 1 = x2 <=> (x - 1)2 = 0 <=> x = 1 (tm)
Vậy S = {1; 5}
Cách lập phương trình:
Gọi x (m) là chiều dài của khu vườn ) \(\left(31< x< 62\right)\)
=> 62 - x (m) là chiều rộng của khu vườn
Diện tích khu vườn ban đầu là: \(x\left(62-x\right)\left(m^2\right)\)
Vì nếu tăng chiều dài lên 5m , chiều rộng lên 3m thì diện tích mảnh vườn tăng thêm \(255m^2\)
\(\Rightarrow\left(x+5\right)\left(65-x\right)=x\left(62-x\right)+255\)
\(\Leftrightarrow-x^2+60x+325=-x^2+62x+255\)
\(\Leftrightarrow2x=70\Rightarrow x=35\left(tm\right)\)
=> Chiều dài khu vườn ban đầu là 35m
=> Chiều rộng khu vườn ban đầu là 62 - 35 = 27m
Vậy chiều dài , chiều rộng ban đầu của mảnh vườn lần lượt là 35m , 27m
Gọi chiều dài mảnh vườn ban đầu là x(m, 0<x<62)
chiều rộng mảnh vườn ban đàu là y(m, 0<y<62,y<x)
⇒ Ta có hệ phương trình: x+y=62 ⇔ x=35
(x+5)(y+3)-xy=255 y=27
Vậy chiều dài mảnh vườn ban đầu là 35m
chiều rộng mảnh vườn ban đầu là 27m