K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8

em mới năm nay lên lớp 6 thôi nhưng vì em học tiếng anh sớm nên em có làm được một đoạn văn tiếng anh giống với đề bài,một số từ ngữ em không biết nên dùng sách tham khảo ạ:School days in the past for fifth graders were a mix of routine and fun. Classes started early, around 8 a.m., with subjects like math, reading, and science. Students used chalk and blackboards, and textbooks were often well-worn. During breaks, kids played outside, enjoying games like tag or jump rope. Summer holidays were a highlight, offering endless days for playing with friends, exploring nature, or visiting family. Getting to school might mean walking, biking, or taking a horse-drawn carriage. These simpler times were filled with laughter, learning, and the excitement of childhood adventures.

15 tháng 8

oh bạn học cả t anhh lớp 9 trc aF

4 tháng 8

\(\left(x+2\right)^2-\left(2x+1\right)\left(x+2\right)=0\\ < =>\left(x+2\right)\left[\left(x+2\right)-\left(2x+1\right)\right]=0\\ < =>\left(x+2\right)\left(x+2-2x-1\right)=0\\ < =>\left(x+2\right)\left(1-x\right)=0\\ < =>\left[{}\begin{matrix}x+2=0\\1-x=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=-2\\x=1\end{matrix}\right.\)

Vậy: ... 

\(\left(x+2\right)^2-\left(2x+1\right)\left(x+2\right)=0\)

=>(x+2)(x+2-2x-1)=0

=>(x+2)(-x+1)=0

=>\(\left[{}\begin{matrix}x+2=0\\-x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=1\end{matrix}\right.\)

2 tháng 8

Để hpt có nghiệm thì: 

\(\dfrac{m}{4}\ne\dfrac{1}{-m}\Leftrightarrow m^2\ne-4\Leftrightarrow m\in R\)

\(\left\{{}\begin{matrix}mx+y=5\\4x-my=1\end{matrix}\right.< =>\left\{{}\begin{matrix}m^2x+my=5m\\4x-my=1\end{matrix}\right.< =>\left\{{}\begin{matrix}\left(m^2+4\right)x=5m+1\\mx+y=5\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}x=\dfrac{5m+1}{m^2+4}\\\dfrac{5m^2+m}{m^2+4}+y=5\end{matrix}\right.< =>\left\{{}\begin{matrix}x=\dfrac{5m+1}{m^2+4}\\y=5-\dfrac{5m^2+m}{m^2+4}\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}x=\dfrac{5m+1}{m^2+4}\\y=\dfrac{5m^2+20-5m^2-m}{m^2+4}\end{matrix}\right.< =>\left\{{}\begin{matrix}x=\dfrac{5m+1}{m^2+4}\\y=\dfrac{20-m}{m^2+4}\end{matrix}\right.\)

Ta có: 

\(2y=1-x=>2\cdot\dfrac{20-m}{m^2+4}=1-\dfrac{5m+1}{m^2+4}\\ \Leftrightarrow\dfrac{40-2m}{m^2+4}=\dfrac{m^2+4-5m-1}{m^2+4}\\ \Leftrightarrow40-2m=m^2-5m+3\\ \Leftrightarrow m^2-5m+3+2m-40=0\\ \Leftrightarrow m^2-3m-37=0\)  

\(\Delta=\left(-3\right)^2-4\cdot1\cdot\left(-37\right)=157>0\\ m_1=\dfrac{3+\sqrt{157}}{2}\\ m_2=\dfrac{3-\sqrt{157}}{2}\)

1. Ở lúa, thực hiện các phép lai sau: - Phép lai 1: P cây thân cao x cây thân thấp → F1 gồm 100% cây thân cao; cho F1 tự thụ phấn → F2 gồm 75% cây thân cao, 25% cây thân thấp. - Phép lai 2: P cây hạt tròn x cây hạt dài → F₁ gồm 100% cây hạt tròn; cho F1 tự thụ phấn → F2 gồm 75% cây hạt tròn, 25% cây hạt dài. Phép lai 3: Cho 2 cây thân cao, hạt tròn giao phấn với nhau → F₁ gồm 25% cây thân cao, hạt dài; 50% cây thân cao, hạt tròn; 25% cây...
Đọc tiếp

1. Ở lúa, thực hiện các phép lai sau:
- Phép lai 1: P cây thân cao x cây thân thấp → F1 gồm 100% cây thân cao; cho F1 tự thụ phấn → F2 gồm 75%
cây thân cao, 25% cây thân thấp.
- Phép lai 2: P cây hạt tròn x cây hạt dài → F₁ gồm 100% cây hạt tròn; cho F1 tự thụ phấn → F2 gồm 75% cây hạt tròn, 25% cây hạt dài.
Phép lai 3: Cho 2 cây thân cao, hạt tròn giao phấn với nhau → F₁ gồm 25% cây thân cao, hạt dài; 50% cây
thân cao, hạt tròn; 25% cây thân thấp, hạt tròn. Biết các gen quy định các tỉnh trạng đang xét nằm trên NST thường và không xảy ra đột biến.
a) Từ phép lai 1 và phép lai 2 xác định quy luật di truyền chi phối mỗi tính trạng.
b) Biện luận và xác định kiểu gen có thể có của P trong phép lai 3. Viết sơ đồ lai minh hoạ.

0
31 tháng 7

`x (2x - 9) = 3x(x - 5) `

`<=> 2x^2 - 9x = 3x^2 - 15x`

`<=> 3x^2 - 2x^2 - 15x + 9x =0`

`<=> x^2 - 6x = 0`

`<=> x(x-6) = 0`

`<=> x = 0` hoặc `x - 6 = 0`

`<=> x = 0` hoặc `x = 6`

Vậy ....

31 tháng 7

\(\left(4x+2\right)\left(x^2+1\right)=0\)(1) 

Ta có: `x^2>=0` với mọi x

`=>x^2+1>=1>0` với mọi x

`=>x^2+1≠0`

\(\left(1\right)\Leftrightarrow4x+2=0\\ \Leftrightarrow4x=-2\\ \Leftrightarrow x=-\dfrac{2}{4}=-\dfrac{1}{2}\)

31 tháng 7

`(4x + 2)(x^2 + 1) = 0`

Trường hợp 1: 

`4x + 2 = 0`

`<=> 4x = -2`

`<=> x =` \(-\dfrac{1}{2}\)

Trường hợp 2: 

`x^2 + 1 = 0`

`<=> x^2 = -1` (Không tồn tại `x`)

Vậy `x =` \(-\dfrac{1}{2}\)

31 tháng 7

\(g.x^3-3x^2+3x-1=0\\ \Leftrightarrow\left(x-1\right)^3=0\\ \Leftrightarrow x-1=0\\ \Leftrightarrow x=1\\ h.x\left(2x-7\right)-4x+14=0\\ \Leftrightarrow x\left(2x-7\right)-2\left(2x-7\right)=0\\ \Leftrightarrow\left(2x-7\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x=7\\x=2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=2\end{matrix}\right.\\ k.\left(2x-5\right)^2\left(x+2\right)^2=0\\ \Leftrightarrow\left[{}\begin{matrix}2x-5=0\\x+2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}2x=5\\x=-2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-2\end{matrix}\right.\\ l.x\left(2x-9\right)=3x\left(x-5\right)\\ \Leftrightarrow3x^2-15x-2x^2+9x=0\\ \Leftrightarrow x^2-6x=0\\ \Leftrightarrow x\left(x-6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\\ m.\left(x^2-2x+1\right)-4=0\\ \Leftrightarrow\left(x-1\right)^2=2^2\\ \Leftrightarrow\left[{}\begin{matrix}x-1=2\\x-1=-2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=2+1=3\\x=-2+1=-1\end{matrix}\right.\)

a: (3x-2)(4x+5)=0

=>\(\left[{}\begin{matrix}3x-2=0\\4x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-\dfrac{5}{4}\end{matrix}\right.\)

c: \(\left(4x+2\right)\left(x^2+1\right)=0\)

mà \(x^2+1>=1>0\forall x\)

nên 4x+2=0

=>4x=-2

=>\(x=-\dfrac{1}{2}\)

d: (2x+7)(x-5)(5x+1)=0

=>\(\left[{}\begin{matrix}2x+7=0\\x-5=0\\5x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{7}{2}\\x=5\\x=-\dfrac{1}{5}\end{matrix}\right.\)

f: \(\left(x^2-4\right)\left(x-2\right)\left(3-2x\right)=0\)

=>\(\left(x-2\right)^2\cdot\left(x+2\right)\left(3-2x\right)=0\)

=>\(\left[{}\begin{matrix}x-2=0\\x+2=0\\3-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\\x=\dfrac{3}{2}\end{matrix}\right.\)

1:ΔABC cân tại A

mà AH là đường trung tuyến

nên AH\(\perp\)BC tại H

Xét tứ giác AHCD có

O là trung điểm chung của AC và HD

=>AHCD là hình bình hành

Hình bình hành AHCD có \(\widehat{AHC}=90^0\)

nên AHCD là hình chữ nhật

2: AHCD là hình chữ nhật

=>AD//HC và AD=HC

Ta có: AD//HC

=>AD//HB

Ta có: AD=CH

mà CH=HB

nên AD=HB

Xét tứ giác ADHB có

AD//HB

AD=HB

Do đó: ADHB là hình bình hành

3: \(CH=\dfrac{CB}{2}=3\left(cm\right)\)

AHCD là hình chữ nhật

=>\(S_{AHCD}=AH\cdot HC=4\cdot3=12\left(cm^2\right)\)