tìm số tự nhiên n để A=\(\dfrac{8n+193}{4n+3}\) sao cho:
a) A có giá trị là số tự nhiên?
b) A là phân số tối giản?
c) n trong khoảng 150 đến 170 thì phân số A rút gọn được?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\dfrac{x-1}{21}\) = \(\dfrac{3}{x+1}\)
( x-1)(x+1) = 21.3
x2 + x - x -1 = 63
x2 = 63 + 1
x2 = 64
x = + - 8
b, 2\(\dfrac{1}{2}\)x + x = 2\(\dfrac{1}{17}\)
x( \(\dfrac{5}{2}\) + 1) = \(\dfrac{35}{17}\)
x = \(\dfrac{35}{17}\) : ( \(\dfrac{5}{2}\)+1)
x = \(\dfrac{35}{17}\) x \(\dfrac{2}{7}\)
x = \(\dfrac{10}{17}\)
c, (x + \(\dfrac{1}{4}\) - \(\dfrac{2}{3}\) ) : ( 2 + \(\dfrac{1}{6}\) - \(\dfrac{1}{4}\)) = \(\dfrac{7}{46}\)
(x - \(\dfrac{5}{12}\)): \(\dfrac{23}{12}\) = \(\dfrac{7}{46}\)
(x - \(\dfrac{5}{12}\)) = \(\dfrac{7}{46}\) x \(\dfrac{23}{12}\)
x - \(\dfrac{5}{12}\) = \(\dfrac{7}{12}\)
x = \(\dfrac{7}{12}\) + \(\dfrac{5}{12}\)
x = 1
d, 2\(\dfrac{1}{3}\)x - 1\(\dfrac{3}{4}\)x + \(2\dfrac{2}{3}\) = 3\(\dfrac{3}{5}\)
x( \(\dfrac{7}{3}\) - \(\dfrac{7}{4}\)) + \(\dfrac{8}{3}\) = \(\dfrac{18}{5}\)
x\(\dfrac{7}{12}\) = \(\dfrac{18}{5}\) - \(\dfrac{8}{3}\)
x\(\dfrac{7}{12}\) = \(\dfrac{14}{15}\)
x = \(\dfrac{14}{15}\) : \(\dfrac{7}{12}\)
x = \(\dfrac{8}{5}\)
\(\dfrac{3}{4}\cdot\dfrac{7}{9}\cdot\dfrac{1}{9}\cdot\dfrac{7}{4}\)
\(=\dfrac{3\cdot7\cdot1\cdot7}{4\cdot9\cdot9\cdot4}=\dfrac{3\cdot7\cdot1\cdot7}{4\cdot3\cdot3\cdot9\cdot4}\)
\(=\dfrac{7\cdot1\cdot7}{4\cdot3\cdot9\cdot4}=\dfrac{49}{432}\)
\(\dfrac{6}{7}\cdot\dfrac{8}{13}-\dfrac{6}{9}\cdot\dfrac{9}{7}+\dfrac{5}{13}\cdot\dfrac{6}{7}\)
\(=\dfrac{6}{7}\cdot\dfrac{8}{13}-\dfrac{6}{7}+\dfrac{5}{13}\cdot\dfrac{6}{7}\)
\(=\dfrac{6}{7}\left(\dfrac{8}{13}-1+\dfrac{5}{13}\right)\)
\(=\dfrac{6}{7}\cdot0\)
\(=0\)
\(2\cdot11\cdot\dfrac{3}{4}\cdot\dfrac{9}{121}\)
\(=\dfrac{2\cdot11\cdot3\cdot9}{4\cdot121}=\dfrac{2\cdot11\cdot3\cdot9}{2\cdot2\cdot11\cdot11}\)
\(=\dfrac{3\cdot9}{2\cdot11}=\dfrac{27}{22}\)
-1,25 = \(\dfrac{-125}{100}=\dfrac{5}{4}\)
-3,5 = \(\dfrac{-35}{10}=\dfrac{7}{2}\)