tìm giá trị nhỏ nhất:
A=|7x-5y|+|2z-3x|+|xy+yz+zx-2016|
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta co: \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
\(\Rightarrow\)\(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=2+2+2=6\)
Ta có: VP\(\ge0\)=> VT \(\ge0\)
Ta có: VT\(\le25\)=> VP\(\le25\)\(\Leftrightarrow8\left(x-2016\right)^2\le25\Leftrightarrow\left(x-2016\right)^2\le\frac{25}{8}< 4\)
Do \(x\in N\)=> \(\left(x-2016\right)^2=1\Leftrightarrow x=2017\)hoặc \(\left(x-2016\right)^2=0\Leftrightarrow x=2016\)
Khi đó: \(25-y^2=8\Leftrightarrow y^2=17\)(vô nghiệm y tự nhiên)
hoặc \(25-y^2=0\Leftrightarrow y^2=25\Leftrightarrow y=5\)
Vậy x=2016, y=5