Cho tam giác ABC, M là trung điểm của AC, trên tia đối của tia MB, lấy điểm D sao cho MD=MB.
a, Chứng minh tam giác ABM bằng tam giác CDM
b, Chứng minh AB//CD.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C K H E D GT KL tự ghi nha
a. Chứng minh BD=CE
Xét tam giác vuông AEC và tam giác vuông ADB, có:
AC=AB (tam giác ABC cân tại A)
Góc A chung
Do đó: tam giác AEC=tam giác ADB (ch-gn)
Nên, BD=CE (hai cạnh tương ứng)
b. Chứng minh DH//EK và DH=EK
Ta có:
EK vuông góc với BC (gt)
DH vuông góc với BC (gt)
Suy ra: EK // DH
Ta lại có:
AB=AE+EB
AC=AD+DC
Mà AB=AC (tam giác ABC cân tại A) và AE=AD (tam giác AEC=tam giác ADB)
Do đó: EB=DC
Xét tam giác vuông EKB và tam giác vuông DHC, có
EB=DC (cmt)
Góc EBK = góc DCH (tam giác cân ABC)
Do đó: tam giác EKB = tam giác DHC (ch-gn)
Nên: EK=DH
A B C M D 1 2
Xét ∆ABM và ∆CDM có :
AM = MC (gt)
\(\widehat{M_1}=\widehat{M_2}\) ( đối đỉnh )
BM = MD (gt)
=> ∆ABM = ∆CDM (c - g - c)
b ) Theo a ) ∆ABM = ∆CDM => \(\widehat{BAM}=\widehat{DCM}\) ( cạnh T/Ư ) Mà lại ở vị trí SLT => AB // CD