Cho H là trực tâm của \(\Delta ABC\). Chứng minh mỗi điểm A, B, C, H là trực tâm của tam giác chứa 3 đỉnh còn lại.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{ac}{bd}\) (1)
\(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{2009a^2}{2009b^2}=\frac{2010c^2}{2010d^2}=\frac{2009a^2+2010c^2}{2009b^2+2010d^2}\) (2)
Từ (1) ; (2) \(\Rightarrow\frac{ac}{bd}=\frac{2009a^2+2010c^2}{2009b^2+2010d^2}\) (đpcm)
\(C=\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+....+\frac{10}{1400}\)
\(=\frac{5}{28}+\frac{5}{70}+\frac{5}{130}+...+\frac{5}{700}\)
\(=\frac{5}{4.7}+\frac{5}{7.10}+\frac{5}{10.13}+....+\frac{5}{25.28}\)
\(=\frac{5}{3}\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+....+\frac{1}{25}-\frac{1}{28}\right)\)
\(=\frac{5}{3}\left(\frac{1}{4}-\frac{1}{28}\right)\)
\(=\frac{5}{3}.\frac{3}{14}=\frac{5}{14}\)