Cho hình thoi \(ABCD\) có \(\widehat{BAD}=120^o\). Tia \(Ax\) tạo với tia \(AB\) một góc \(\widehat{BAx}=15^o\) và cắt cạnh \(BC\) tại \(M\), cắt đường thẳng \(CD\) tại \(N\). Chứng minh: \(\dfrac{4}{AB^2}=\dfrac{3}{AM^2}+\dfrac{3}{AN^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi số xe dự định tham gia chở hàng là x (xe) với x>4, x nguyên dương
Mỗi xe dự định chở khối lượng hàng là: \(\dfrac{20}{x}\) (tấn)
Số xe thực tế tham gia chở hàng là: \(x-4\) (xe)
Thực tế mỗi xe phải chở số hàng là: \(\dfrac{20}{x-4}\) (tấn)
Do thực tế mỗi xe phải chở nhiều hơn dự định là 5/6 tấn hàng nên ta có pt:
\(\dfrac{20}{x-4}-\dfrac{20}{x}=\dfrac{5}{6}\)
\(\Rightarrow24x-24\left(x-4\right)=x\left(x-4\right)\)
\(\Leftrightarrow x^2-4x-96=0\)
\(\Rightarrow\left[{}\begin{matrix}x=12\\x=-8\left(loại\right)\end{matrix}\right.\)
Vậy thực tế có \(12-4=8\) xe tham gia vận chuyển

Lời giải:
Gọi vận tốc 2 xe là $a,b$ (km/h). Điều kiện: $a>b>0$
Tổng vận tốc 2 xe: $a+b=300:5=60(1)$ (km/h)
Xe chậm đi được: $5h20'=\frac{16}{3}$ giờ
Xe nhanh đi được: $5h20'- 30'=4h50'=\frac{29}{6}$ giờ
Tổng quãng đường 2 xe đi:
$\frac{16}{3}b+\frac{29}{6}a=300(2)$
Từ $(1); (2)\Rightarrow a=20; b=40$ (km/h)
Lời giải:
Gọi vận tốc 2 xe là $a,b$ (km/h). Điều kiện: $a>b>0$
Tổng vận tốc 2 xe: $a+b=300:5=60(1)$ (km/h)
Xe chậm đi được: $5h20'=\frac{16}{3}$ giờ
Xe nhanh đi được: $5h20'- 30'=4h50'=\frac{29}{6}$ giờ
Tổng quãng đường 2 xe đi:
$\frac{16}{3}b+\frac{29}{6}a=300(2)$
Từ $(1); (2)\Rightarrow a=20; b=40$ (km/h)


Do \(a+b+c\) chia hết 12 nên \(a+b+c\) chẵn
\(\Rightarrow\) Trong số a;b;c phải có ít nhất 1 số là chẵn
\(\Rightarrow abc\) chẵn hay \(abc=2k\) với k là số nguyên nào đó
Ta có:
\(P=\left(a+b\right)\left(b+c\right)\left(c+a\right)-5abc\)
\(=ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)-3abc\)
\(=ab\left(a+b\right)+abc+bc\left(b+c\right)+abc+ca\left(c+a\right)+abc-6abc\)
\(=ab\left(a+b+c\right)+bc\left(a+b+c\right)+ca\left(a+b+c\right)-6abc\)
\(=\left(a+b+c\right)\left(ab+bc+ca\right)-6abc\)
\(=\left(a+b+c\right)\left(ab+bc+ca\right)-12k\)
Do \(\left\{{}\begin{matrix}a+b+c⋮12\\12k⋮12\end{matrix}\right.\) \(\Rightarrow P⋮12\) (đpcm)

\(\sqrt{\dfrac{a}{b+c}}=\dfrac{a}{\sqrt{a}.\sqrt{b+c}}=\dfrac{2a}{2\sqrt{a}.\sqrt[]{b+c}}\ge\dfrac{2a}{a+b+c}\)
Tương tự:
\(\sqrt{\dfrac{b}{c+a}}\ge\dfrac{2b}{a+b+c}\) ; \(\sqrt{\dfrac{c}{a+b}}\ge\dfrac{2c}{a+b+c}\)
Cộng vế:
\(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{c}{a+b}}\ge\dfrac{2a+2b+2c}{a+b+c}=2\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=b+c\\b=c+a\\c=a+b\end{matrix}\right.\) \(\Rightarrow a+b+c=0\) (không tồn tại do a;b;c dương)
\(\Rightarrow\) Dấu "=" không xảy ra
Nên \(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{c}{a+b}}>2\)

D E F H M B C A K G
Nối E với F và nối K với F
Ta có
E và F cùng nhìn BC dưới 1 góc \(90^o\) => BCEF là tứ giác nội tiếp
\(\Rightarrow\widehat{BEK}=\widehat{KCF}\) (góc nt cùng chắn cung BF) và
\(\widehat{CFE}=\widehat{CBE}\) (góc nt cùng chắn cung CE) (1)
Xét tg BKE và tg FKC có
\(\widehat{BEK}=\widehat{KCF}\) (cmt)
\(\widehat{EKC}\) chung
\(\Rightarrow\widehat{KBE}=\widehat{KFC}\) (2)
Từ (1) và (2) \(\Rightarrow\widehat{KBE}+\widehat{CBE}=\widehat{KFC}+\widehat{CFE}\)
Mà \(\widehat{KBE}+\widehat{CBE}=\widehat{KBC}=180^o\)
\(\Rightarrow\widehat{KFC}+\widehat{CFE}=180^o\)
=> E; F; K thẳng hàng

A B C D E I H K F O G
a/
Xét \(\Delta ABC\)
AD và BE cắt nhau tại H (gt)
\(\Rightarrow CH\perp AB\) (trong tam giác 3 đường cao đồng quy)
b/ Gọ F là giao của CH với AB ta có
F và D cùng nhìn BH dưới 1 góc \(90^o\) => F và H nằm trên đường tròn đường kính BH => Tứ giác BFHD là tứ giác nội tiếp)
Ta có
\(sđ\widehat{ABC}=\dfrac{1}{2}sđcungFHD\) (góc nt đường tròn)
\(sđ\widehat{FHD}=\dfrac{1}{2}sđcungFBD\) (góc nt đường tròn)
\(\Rightarrow sđ\widehat{ABC}+sđ\widehat{FHD}=\dfrac{1}{2}\left(sđcungFHD+sđcungFBD\right)\)
Mà \(sđcungFHD+sđcungFBD=360^o\)
\(\Rightarrow sđ\widehat{ABC}+sđ\widehat{FHD}=\dfrac{1}{2}.360^o=180^o\)
Mà \(\widehat{CHI}+\widehat{FHD}=\widehat{FHC}=180^o\)
\(\Rightarrow\widehat{CHI}=\widehat{ABC}\) (cùng bù với \(\widehat{FHD}\) ) (1)
Xét (O) có
\(\widehat{ABC}=\widehat{AIC}\) (góc nt đường tròn cùng chắn cung AC) (2)
Từ (1) và (2) \(\Rightarrow\widehat{CHI}=\widehat{AIC}\) => tg CHI cân tại C
c/
Chứng minh tương tự ta cũng có CHK là tg cân tại C
Ta có
\(BE\perp AC\left(gt\right)\Rightarrow AC\perp HK\)
\(\Rightarrow EH=EK\) (trong tg cân đường cao xp từ đỉnh tg cân đồng thời là đường trung tuyến)
=> H đối xứng K qua AC
d/ Gọi G là giao của CO với (O)
Ta có tg CHK cân tại C (cmt)
=> CK=CH
Mà tg CHI cân tại C (cmt) => CH=CI
=> CK=CI => tg CKI cân tại C (3)
Ta có
\(sđ\widehat{CKI}=\dfrac{1}{2}sđcungCI\) (góc nt (O))
\(sđ\widehat{CIK}=\dfrac{1}{2}sđcungCK\) (góc nt (O))
\(\Rightarrow sđcungCI=sđcungCK\)
Ta có
sđ cung CIG = sđ cung CKG \(=180^o\)
=> sđ cung CIG - sđ cung CI = sđ cung CKG - sđ cung CK
=> sđ cung GBI = sđ cung GAK
Ta có
\(sđ\widehat{ICG}=\dfrac{1}{2}sđcungGBI\) (góc nt (O))
\(sđ\widehat{KCG}=\dfrac{1}{2}sđcungGAK\) (góc nt (O))
\(\Rightarrow\widehat{ICG}=\widehat{KCG}\) => CG là phân giác của \(\widehat{KCI}\) (4)
Từ (3) và (4) => \(OC\perp KI\) (trong tg cân đường phân giác của góc ở đỉnh tg cân đồng thời là đường cao)
e/
Ta có E và D cùng nhìn CH dưới 1 góc \(90^o\) => CDHE là tứ giác nội tiếp
\(\Rightarrow\widehat{HDE}=\widehat{ECF}\) (góc nt cùng chắn cung HE) (5)
Ta có F và E cùng nhìn BC dưới 1 góc \(90^o\) => BCEF là tứ giác nt
\(\Rightarrow\widehat{ABK}=\widehat{ECF}\) (góc nt cùng chắn cung EF) (6)
Xét (O) có
\(\widehat{ABK}=\widehat{AIK}\) (góc nt cùng chắn cung AK) (7)
Từ (5) (6) (7) \(\Rightarrow\widehat{HDE}=\widehat{AIK}\) mà 2 góc này ở vị trí đồng vị nên
=> ED//KI
Mà \(OC\perp KI\left(cmt\right)\)
\(\Rightarrow OC\perp ED\)