lớp em dự định làm tấm biển hiệu cấm xả rác để nhắc nhở mọi người giữ vệ sinh môi trường.Biển hiệu có chu vi 12,56dm. Với miếng bìa hình chữ nhật có diện tích 15dm2, em có đủ làm biển hiệu đó được hay không
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu số thứ nhất là \(1\)phần thì số thứ hai là \(5\)phần.
Hiệu số phần bằng nhau là:
\(5-1=4\)(phần)
Số thứ nhất là:
\(60\div4\times1=15\)
Số thứ hai là:
\(60+15=75\)
Áp dụng BĐT Cô-si:
\(a^2+3\ge2\sqrt{3a^2}=2\sqrt{3}a\)
Tương tự: \(b^2+3\ge2\sqrt{3}b\) ; \(c^2+3\ge2\sqrt{3}c\)
Cộng vế: \(a^2+b^2+c^2+9\ge2\sqrt{3}\left(a+b+c\right)\)
\(\Rightarrow a+b+c\le\dfrac{a^2+b^2+c^2+9}{2\sqrt{3}}=\dfrac{9+9}{2\sqrt{3}}=3\sqrt{3}\)
\(\Rightarrow-\left(a+b+c\right)\ge-3\sqrt{3}\)
Tiếp tục áp dụng BĐT Cô-si:
\(\dfrac{a^4}{b+2}+\dfrac{9}{\left(2+\sqrt{3}\right)^2}\left(b+2\right)\ge2\sqrt{\dfrac{9a^4\left(b+2\right)}{\left(b+2\right)\left(2+\sqrt{3}\right)^2}}=\dfrac{6a^2}{2+\sqrt{3}}\)
Tương tự:
\(\dfrac{b^4}{c+2}+\dfrac{9}{\left(2+\sqrt{3}\right)^2}\left(c+2\right)\ge\dfrac{6b^2}{2+\sqrt{3}}\)
\(\dfrac{c^4}{a+2}+\dfrac{9}{\left(2+\sqrt{3}\right)}\left(a+2\right)\ge\dfrac{6c^2}{2+\sqrt{3}}\)
Cộng vế:
\(P+\dfrac{9}{\left(2+\sqrt{3}\right)^2}\left(a+b+c+6\right)\ge\dfrac{6}{2+\sqrt{3}}\left(a^2+b^2+c^2\right)=\dfrac{54}{2+\sqrt{3}}\)
\(\Rightarrow P\ge\dfrac{54}{2+\sqrt{3}}-\dfrac{9}{\left(2+\sqrt{3}\right)^2}\left(a+b+c+6\right)\ge\dfrac{54}{2+\sqrt{3}}-\dfrac{9}{\left(2+\sqrt{3}\right)^2}.\left(3\sqrt{3}+6\right)\)
\(\Rightarrow P\ge\dfrac{27}{2+\sqrt{3}}=27\left(2-\sqrt{3}\right)\)
Dấu "=" xảy ra khi \(a=b=c=\sqrt{3}\)
Câu 1. A
Câu 2. C ( vì nó không phải là từ láy )
Em trả lời thế đúng không ạ?
Nếu số thứ nhất là \(1\)phần thì số thứ hai là \(5\)phần.
Hiệu số phần bằng nhau là:
\(5-1=4\)(phần)
Số thứ nhất là:
\(128\div4\times1=32\)
Số thứ hai là:
\(32+128=160\)
Áp dụng BĐT Svácxơ, ta có:
\(\dfrac{a^2}{b+1}+\dfrac{b^2}{c+1}+\dfrac{c^2}{a+1}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c+3}=\dfrac{81}{12}=\dfrac{27}{4}\)
Dấu "=" ⇔ a=b=c=3
Áp dụng BĐT Cô-si:
\(\dfrac{a^2}{b+1}+\dfrac{9}{16}\left(b+1\right)\ge2\sqrt{\dfrac{9a^2\left(b+1\right)}{16\left(b+1\right)}}=\dfrac{3a}{2}\)
Tương tự: \(\dfrac{b^2}{c+1}+\dfrac{9}{16}\left(c+1\right)\ge\dfrac{3b}{2}\) ; \(\dfrac{c^2}{a+1}+\dfrac{9}{16}\left(a+1\right)\ge\dfrac{3c}{2}\)
Cộng vế:
\(VT+\dfrac{9}{16}\left(a+b+c+3\right)\ge\dfrac{3}{2}\left(a+b+c\right)\)
\(\Leftrightarrow VT+\dfrac{27}{4}\ge\dfrac{27}{2}\Rightarrow VT\ge\dfrac{27}{4}\)
Dấu "=" xảy ra khi \(a=b=c=3\)
khoai vậy bạn ơi