Cho đa thức M(x)=(x^3/2-1/2*x^4+1/2*x^2+1/3*x)-(-1/2*x^4+x^2+x/3)Thu gọn và chứng minh M(x) thuộc Z vs mọi x thuộc Z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu tam giác ABC là vuông thì cạnh huyền sẽ là cạnh lớn nhất
a, cạnh huyền tỉ lệ với 15 , 2 cạnh góc vuông tỉ lệ với 9 và 12
Ta thấy : \(9^2+12^2=15^2\)
Vậy tam giác ABC là tam giác vuông.
b, cạnh huyền tỉ lệ với 3 , 2 cạnh góc vuông tỉ lệ với 2.4 và 1.8
Ta thấy : \(2,4^2+1,8^2=3^2\)
Vậy tam giác ABC là tam giác vuông.
c, cạnh huyền tỉ lệ với \(4\sqrt{2}\) , 2 cạnh góc vuông tỉ lệ với 4 và 4
Ta thấy : \(4^2+4^2=\left(\text{4\sqrt{2}}\right)^2\)\(4^2+4^2=\left(4\sqrt{2}\right)^2\)
Vậy tam giác ABC là tam giác vuông.
Tam giác ABC vuông tại A => Áp dụng định lý pitago ta có : \(BC^2=AB^2+AC^2=26^2=676\) (cm)
\(\frac{AB}{AC}=\frac{5}{12}\Rightarrow\frac{AB}{5}=\frac{AC}{12}\Rightarrow\frac{AB^2}{25}=\frac{AC^2}{144}\) Áp dụng TCDTSBN ta có :
\(\frac{AB^2}{25}=\frac{AC^2}{144}=\frac{AB^2+AC^2}{25+144}=\frac{676}{169}=4=2^2\)
\(\Rightarrow\frac{AB}{5}=2\Rightarrow AB=10\left(cm\right)\)
\(\Rightarrow\frac{AC}{12}=2\Rightarrow AC=24\left(cm\right)\)
Vậy AB = 10 (cm); AC = 24 (cm)