cho tam giác ABC vuông cân tại A. M là trung điểm của BC. trên BC lấy điểm D tuỳ ý, vẽ BH vuông góc với AD, CK vuông góc với AD. chứng minh : a) tam giác ABH= tam giác CAK b) tam giác AMC vuông cân c) tam giác MHK vuông cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(a + b + c)[(a - b)2 + (b - c)2 + (c - a)2] = 0
=> a + b + c = 0
Hoặc (a - b)2 + (b - c)2 + (c - a)2 = 0
Mặt khác : (a - b)2 \(\ge\)0
(b - c)2 \(\ge\)0
(c - a)2 \(\ge\)0
=> (a - b)2 = 0 => a - b = 0 => a = b
(b - c)2 = 0 b - c = 0 b = c
(c - a)2 = 0 c - a = 0 c = a
=> a = b = c
Ta có :
\(B=\left(1+\frac{a}{b}\right).\left(1+\frac{b}{c}\right).\left(1+\frac{c}{a}\right)\)
\(B=\frac{a+b}{b}.\frac{b+c}{c}.\frac{c+a}{a}\) (quy đồng cho các hạng tử cùng mẫu rồi cộng)
\(B=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{bca}\)
Mà a = b = c
Thay vào , ta lại có :
\(B=\frac{\left(a+a\right)\left(a+a\right)\left(a+a\right)}{a^3}=\frac{2a.2a.2a}{a^3}=\frac{8.a^3}{a^3}=8\)
=> B = 8
\(A=a\left(b+c\right)-b\left(a+c\right)+c\left(a+b\right).\)
\(=a\left(b+1\right)-b\left(a+1\right)+1\cdot1000.\)
\(=ab+a-ab-b+1000.\)
\(=a-b+1000\)
\(=1000+1000=2000\)