tìm GTLN của
\(-4x^2+5x+1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(giải:\)
\(16x^2y-4xy^2-4x^3+x^2y\)
\(=\left(16x^2y-4xy^2\right)-\left(4x^3-x^2y\right)\)
\(=4xy\left(4x-y\right)-x^2\left(4x-y\right)\)
\(=\left(4x-y\right)\left(4xy-x^2\right)\)
\(=\left(4x-y\right)\left(\sqrt{4xy}-x\right)\left(\sqrt{4xy}+x\right)\)
\(=\left(4x-y\right)\left(2\sqrt{xy}-x\right)\left(2\sqrt{xy}+x\right)\)
\(\frac{x}{y}=\frac{10}{9}\Rightarrow\frac{x}{10}=\frac{y}{9}\) (1)
\(\frac{y}{z}=\frac{3}{4}\Rightarrow\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{y}{3}.\frac{1}{3}=\frac{z}{4}.\frac{1}{3}\Rightarrow\frac{y}{9}=\frac{z}{12}\) (2)
Từ (1) ; (2) \(\Rightarrow\frac{x}{10}=\frac{y}{9}=\frac{z}{12}\)và \(x-y+z=78\)Áp dụng TC DTSBN ta có :
\(\frac{x}{10}=\frac{y}{9}=\frac{z}{12}=\frac{x-y+z}{10-9+12}=\frac{78}{13}=6\)
\(\Rightarrow x=60;y=54;z=72\)
Ta có :
\(A+B=2x^2yz+xy^2z\)
\(=xyz\left(2x+y\right)\)
Vì \(2x+y⋮m\) nên \(xyz\left(2x+y\right)⋮m\)
Do đó : \(A+B⋮m\) (đpcm)
CM BNC=CMB
MC=BN ; \(\widehat{B}=\widehat{C}\) ; BC chung
\(\Rightarrow\)BM=CN
CM ABM=ACN
AB=AC ; AM=AN ; \(\widehat{A}\) chung
\(\Rightarrow\)ABM =ACN \(\Rightarrow\) \(\widehat{ABM}=\widehat{ACN}\)
b \(\widehat{ABM}=\widehat{ACN}\) \(\Rightarrow\)\(\widehat{ABI}=\widehat{ACI}\);
\(\Rightarrow\) \(\widehat{AMB}=\widehat{ANC}\)\(\Rightarrow\)\(\widehat{BMC}=\widehat{CNB}\)
Xét BIN vs CIM : BN=CM ; \(\widehat{ACM}=\widehat{ACN};\)\(\widehat{BMC}=\widehat{CNB}\)
\(\Rightarrow\) IB=IC \(\Rightarrow\)IBC cân
c, Xét AIB và AIC : IB =IC ; \(\widehat{ABI}=\widehat{ACI};AB=AC\)
\(\Rightarrow\) \(\widehat{BAI}=\widehat{CAI}\)\(\Rightarrow\)AI pg góc A
d, xét BAD và CAD
góc BAI = CAI ; AB=AC ; AD chung
\(\Rightarrow\)góc ADB = ADC mà chúng cộng nhau = 180 \(\Rightarrow\)\(\widehat{D}\)= 90
giá trị nhỏ nhất chứ hình như sai đề
\(giải:\)
\(-4x^2+5x+1\)
\(=-4x^2+5x-\frac{25}{16}+\frac{41}{16}\)
\(=\left(-4x^2+5x-\frac{25}{16}\right)+\frac{41}{16}\)
\(=-\left(4x^2-5x+\frac{25}{16}\right)+\frac{41}{16}\)
\(=-\left[\left(2x\right)^2-2.2x.\frac{5}{4}+\left(\frac{5}{4}\right)^2\right]+\frac{41}{16}\)
\(=-\left(2x-\frac{5}{4}\right)^2+\frac{41}{16}\le\frac{41}{16}\)
\(GTLN\) \(của\)\(-4x^2+5x+1=\frac{41}{16}\)\(đạt\)\(khi\)\(-\left(2x-\frac{5}{4}\right)^2=0\)
\(\Leftrightarrow2x-\frac{5}{4}=0\)
\(\Leftrightarrow2x=\frac{5}{4}\Leftrightarrow x=\frac{5}{8}\)
vậy gtln của -4x^2+5x+1 bằng 41/16 tại x=5/8