K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2016

a) ta có x^2 > hoặc = 0 với mọi x mà x^2>x=>x^2-x > hoặc =0 với mọi x=>x^2-x+1> hoặc =1

=> đa thức x^2-x+1 ko có nghiệm

b) tương tự

2 tháng 4 2016

nếu y>4 thì x^2 luôn luôn có tận cùng là 3

Mà x dương nên x^2 không thể có tận cùng là 3 (Do x^2 là bình phương 1 stn)

=> y<4

Mà x, y nguyên dương => y>0

=> y=1,2,3 => Thử ra là được

2 tháng 4 2016

x2 - 2y2 = 1

=> x2 - 1 = 2y2 => (x - 1).(x + 1) = 2y2 (1)

Xét tổng (x - 1) + (x + 1) = 2x là số chẵn => x - 1 ; x + 1 cùng tích chẵn hoặc lẻ. (2)

Từ (1), (2) => x - 1; x + 1 cùng là số chẵn.

=> (x - 1).(x + 1) là số chẵn <=> 2y2 là số chẵn <=> y2 là số chẵn.

Mà y là số nguyên tố => y = 2. Khi đó x = 1 + 2.22 = 9 => x = 3

                                Vậy x = 3 và y = 2

mình nhanh nhất nha bạn !!!

2 tháng 4 2016

tham khảo

Tìm nguyên tố x, y thỏa mãn  x2 - 2y2 = 1

2 tháng 4 2016

??????,,,,,

ai mua , đổi acc bang bang thì nhắn tin vs tui

 Biến đổi bt tương đương : (x^2-1)/2 =y^2 
Ta có: vì x,y là số nguyên dương nên 
+) x>y và x phải là số lẽ. 
Từ đó đặt x=2k+1 (k nguyên dương); 
Biểu thức tương đương 2*k*(k+1)=y^2 (*); 
Để ý rằng: 
Y là 1 số nguyên tố nên y^2 sẽ là 1 số nguyên dương mà nó có duy nhất 3 ước là : 
{1,y, y^2} ; 
từ (*) dễ thấy y^2 chia hết cho 2, dĩ nhiên y^2 không thể là 2, vậy chỉ có thể y=2 =>k=1; 
=>x=3. 
Vậy ta chỉ tìm được 1 cặp số nguyên tố thoả mãn bài ra là x=3 và y=2 (thoả mãn).

tích nha

2 tháng 4 2016

\(Ta\) \(có:\)

\(A+B+C=x^2yz+xy^2z+xyz^2=xyz\left(x+y+z\right)=xyz.1=xyz\)

áp dụng đ/lý bất đẳng thức ta có: MA < MI + IA

                                    => MA + MB < MI + IA + MB

                                   => MA + MB < IB + IA (1)

        tương tự ta có: IB < IC + BC

                        => IB + IA < IC + BC + IA

                       => IB + IA < AC + BC (2)

từ (1) và (2) => MA + MB < AC + BC (3)

tương tự ta cũng có: MA + MC < AB + BC (4)

                                 MB + MC < AB + AC (5)

cộng theo vế (3) ; (4) ; (5) ta có:

MA + MB + MA + MC + MB + MC < AC + BC+ AB + BC + AB + AC

2( MA + MB + MC) < 2( AB + AC + BC)

MA + MB + MC < AB + AC + BC ( vì cùng chia 2 vế cho 2) (6)

áp dụng đ/lý bất đẳng thức tam giác ta có:

AB < MA + MB

AC < MA + MC

BC < MC + MB

cộng theo vế của các bất đẳng thức trên ta có:

AB + AC + BC < MA + MB + MA + MC + MC + MB

AB + AC + BC < 2( MA + MB + MC)

AB + AC + BC / 2 MA + MB + MC ( chia cả 2 vế cho 2) (7)

từ (6) và (7) => AB + AC + BC / 2< MA + MB + MC < AB + AC + BC

vậy MA + MA + MC lớn hơn nửa chu vi và nhỏ hơn chu vi tam giác ABC

18 tháng 1 2022

đéo bt làm thì đừng có thể hiện