Đơn thức \(5x^3y^2z\) có bậc là
A.3 B.2
C.6 D.5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`#3107.101107`
Thay `x = 0` vào đa thức `P(x):`
`P(0) = 0^5 - 3*0^2 + 7*0^4 - 9*0^3 + 0^2 - 1/4 * 0`
`= 0`
`=> x = 0` là nghiệm của đa thức `P(x)`
Thay `x = 0` vào đa thức `Q(x):`
`Q(0) = 5*0^4 - 0^5 + 0^2 - 2*0^3 + 3*0^2 - 1`
`= -1`
`=> x = 0` không phải là nghiệm của đa thức `Q(x).`
Đặt M(x)=0
=>\(2x^2+3x-7=0\)(1)
\(\text{Δ}=3^2-4\cdot2\cdot\left(-7\right)=9+56=65>0\)
Do đó: Phương trình (1) có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-3-\sqrt{65}}{2\cdot2}=\dfrac{-3-\sqrt{65}}{4}\\x_2=\dfrac{-3+\sqrt{65}}{4}\end{matrix}\right.\)
\(\left(x+2\right)\left(3-2x\right)+x=2x^3-3\)
=>\(3x-2x^2+6-4x+x=2x^3-3\)
=>\(-2x^2+6-2x^3+3=0\)
=>\(-2x^3-2x^2+9=0\)
=>\(2x^3+2x^2-9=0\)
=>\(x\simeq1,376\)
a: Số tiền phải trả khi mua 1 đôi dép là: \(x\cdot\left(1-40\%\right)=0,6x\left(đồng\right)\)
b: Số tiền phải trả trong đợt khuyến mãi là:
\(0,6\cdot300000=180000\left(đồng\right)\)
M(x)=x^2-2x+5x^2+3x-x^2
=5x^2+x
b) Thế x=-2 và M=5x^2+x vào đa thức A, ta có:
A= [5(-2)^2+(-2)]+2(-2)-8
A=6
Vậy đa thức A có giá trị bằng 6 tại x=-2
Bậc của đơn thức đã cho là:
\(3+2+1=6\)
Chọn C
cnay là đa thức mà c=)))