K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8

 Gọi A, B, C lần lượt là các biến cố: "Khách hàng trả lời "sẽ sử dụng"."; "Khách hàng trả lời "có thể sẽ sử dụng"." và "Khách hàng trả lời "không sử dụng"." và X là biến cố: "Khách hàng sử dụng dịch vụ."

 Khi đó theo đề bài, ta có \(P\left(A\right)=\dfrac{17}{100};P\left(B\right)=\dfrac{48}{100};P\left(C\right)=\dfrac{35}{100};P\left(X|A\right)=0,4;P\left(X|B\right)=0,2;P\left(X|C\right)=0,01\)

 Theo công thức xác suất đầy đủ: 

\(P\left(X\right)=P\left(A\right)P\left(X|A\right)+P\left(B\right)P\left(X|B\right)+P\left(C\right)P\left(X|C\right)\)

\(=\dfrac{17}{100}.0,4+\dfrac{48}{100}.0,2+\dfrac{35}{100}.0,01=\dfrac{67}{400}=0,1675=16,75\%\)

Vậy tỉ lệ khách hàng sử dụng dịch vụ là \(16,75\%\)

NV
9 tháng 8

Gọi \(A_1\) là biến cố: "khách hàng được chọn thuộc nhóm trả lời sẽ sử dụng"

`A_2` là biến cố: "khách hàng được chọn thuộc nhóm trả lời có thể sẽ sử dụng"

`A_3` là biến cố: "khách hàng được chọn thuộc nhóm trả lời không sử dụng"

\(\Rightarrow P\left(A_1\right)=\dfrac{17}{100}\) ; \(P\left(A_2\right)=\dfrac{48}{100}\)\(P\left(A_3\right)=\dfrac{35}{100}\)

\(A_1;A_2;A_3\) tạo thành 1 nhóm biến cố đầy đủ

Gọi B là biến cố: "khách hàng đó sử dụng dịch vụ của công ty"

\(\Rightarrow P\left(B|A_1\right)=0,4\)\(P\left(B|A_2\right)=0,2\)\(P\left(B|A_3\right)=0,01\)

Theo công thức xác suất đầy đủ:

\(P\left(B\right)=0,4\times\dfrac{17}{100}+0,2\times\dfrac{48}{100}+0,01\times\dfrac{35}{100}=0,1675\)

 

NV
9 tháng 8

Gọi \(A_1\) là biến cố: "2 sản phẩm lấy nhầm từ lô 1 đều là sản phẩm tốt"

\(A_2\) là biến cố: "2 sản phẩm lấy nhầm từ lô 1 có 1 sản phẩm tốt 1 sản phẩm xấu"

`A_3` là biến cố: "2 sản phẩm lấy nhầm từ lô 1 đều là sản phẩm xấu"

\(\Rightarrow P\left(A_1\right)=\dfrac{C_6^2}{C_9^2}=\dfrac{5}{12}\)\(P\left(A_2\right)=\dfrac{C_6^1.C_3^1}{C_9^2}=\dfrac{1}{2}\)\(P\left(A_3\right)=\dfrac{C_3^2}{C_9^2}=\dfrac{1}{12}\)

\(A_1;A_2;A_3\) tạo thành 1 nhóm biến cố đầy đủ

Gọi B là biến cố: "sản phẩm cuối cùng lấy ra là sản phẩm tốt"

\(\Rightarrow P\left(B|A_1\right)=\dfrac{5+2}{7+2}=\dfrac{7}{9}\);

 \(P\left(B|A_2\right)=\dfrac{5+1}{7+2}=\dfrac{2}{3}\);

 \(P\left(B|A_3\right)=\dfrac{5}{7+2}=\dfrac{5}{9}\)

a.

\(P\left(B\right)=P\left(A_1\right).P\left(B|A_1\right)+P\left(A_2\right).P\left(B|A_2\right)+P\left(A_3\right).P\left(B|A_3\right)\)

\(=\dfrac{5}{12}.\dfrac{7}{9}+\dfrac{1}{2}.\dfrac{2}{3}+\dfrac{1}{12}.\dfrac{5}{9}=\dfrac{19}{27}\)

b.

Gọi `C_1` là biến cố "sản phẩm cuối cùng lấy ra thuộc lô 1"

`C_2` là biến cố: "sản phẩm cuối cùng lấy ra thuộc lô 2"

\(\Rightarrow P\left(C_1\right)=\dfrac{2}{9};P\left(C_2\right)=\dfrac{7}{9}\)

`C_1`, `C_2` cũng là nhóm biến cố đầy đủ

\(P\left(B|C_1\right)=\dfrac{6}{9}=\dfrac{2}{3}\)

\(\Rightarrow P\left(C_1|B\right)=\dfrac{P\left(B|C_1\right).P\left(C_1\right)}{P\left(B\right)}=\dfrac{\dfrac{2}{3}.\dfrac{2}{9}}{\dfrac{19}{27}}=\dfrac{4}{19}\)

c.

\(P\left(A_2|B\right)=\dfrac{P\left(B|A_2\right).P\left(A_2\right)}{P\left(B\right)}=\dfrac{\dfrac{2}{3}.\dfrac{1}{2}}{\dfrac{19}{27}}=\dfrac{9}{19}\)

DT
9 tháng 8

a) \(\dfrac{x+2004}{x+2005}+\dfrac{x+2005}{2006}< \dfrac{x+2006}{2007}+\dfrac{x+2007}{2008}\\ \Rightarrow\left(\dfrac{x+2004}{2005}-1\right)+\left(\dfrac{x+2005}{2006}-1\right)< \left(\dfrac{x+2006}{2007}-1\right)+\left(\dfrac{x+2007}{2008}-1\right)\\ \Rightarrow\dfrac{x-1}{2005}+\dfrac{x-1}{2006}< \dfrac{x-1}{2007}+\dfrac{x-1}{2008}\\ \Rightarrow\dfrac{x-1}{2005}+\dfrac{x-1}{2006}-\dfrac{x-1}{2007}-\dfrac{x-1}{2008}< 0\\ \)

\(\Rightarrow\left(x-1\right)\left(\dfrac{1}{2005}+\dfrac{1}{2006}-\dfrac{1}{2007}-\dfrac{1}{2008}\right)< 0\left(a\right)\)

Nhận thấy: \(\dfrac{1}{2005}>\dfrac{1}{2007},\dfrac{1}{2006}>\dfrac{1}{2008}\\ \Rightarrow\dfrac{1}{2005}-\dfrac{1}{2007}>0,\dfrac{1}{2006}-\dfrac{1}{2008}>0\\ \Rightarrow\dfrac{1}{2005}+\dfrac{1}{2006}-\dfrac{1}{2007}-\dfrac{1}{2008}>0\)

\(\left(a\right)\Rightarrow x-1< 0\Leftrightarrow x< 1\)

Vậy \(S=\left\{x|x< 1\right\}\)

DT
9 tháng 8

b) \(\dfrac{x-2}{2002}+\dfrac{x-4}{2000}< \dfrac{x-3}{2001}+\dfrac{x-5}{1999}\\ \Rightarrow\left(\dfrac{x-2}{2002}-1\right)+\left(\dfrac{x-4}{2000}-1\right)< \left(\dfrac{x-3}{2001}-1\right)+\left(\dfrac{x-5}{1999}-1\right)\\ \Rightarrow\dfrac{x-2004}{2002}+\dfrac{x-2004}{2000}< \dfrac{x-2004}{2001}+\dfrac{x-2004}{1999}\\ \Rightarrow\dfrac{x-2004}{2002}+\dfrac{x-2004}{2000}-\dfrac{x-2004}{2001}-\dfrac{x-2004}{1999}< 0\\ \)

\(\Rightarrow\left(x-2004\right)\left(\dfrac{1}{2002}+\dfrac{1}{2000}-\dfrac{1}{2001}-\dfrac{1}{1999}\right)< 0\left(b\right)\)

Nhận thấy: \(\dfrac{1}{2002}< \dfrac{1}{2001},\dfrac{1}{2000}< \dfrac{1}{1999}\Rightarrow\dfrac{1}{2002}-\dfrac{1}{2001}< 0,\dfrac{1}{2000}-\dfrac{1}{1999}< 0\\ \Rightarrow\dfrac{1}{2002}+\dfrac{1}{2000}-\dfrac{1}{2001}-\dfrac{1}{1999}< 0\)

\(\left(b\right)\Rightarrow x-2004>0\Leftrightarrow x>2004\)

9 tháng 8

\(a,\dfrac{x+2}{6}+\dfrac{x+5}{3}>\dfrac{x+3}{5}+\dfrac{x+6}{2}\\ < =>\left(\dfrac{x+2}{6}+1\right)+\left(\dfrac{x+5}{3}+1\right)>\left(\dfrac{x+3}{5}+1\right)+\left(\dfrac{x+6}{2}+1\right)\\ < =>\dfrac{x+8}{6}+\dfrac{x+8}{3}>\dfrac{x+8}{5}+\dfrac{x+8}{2}\\ < =>\dfrac{x+8}{5}+\dfrac{x+8}{2}-\dfrac{x+8}{6}-\dfrac{x+8}{2}< 0\\ < =>\left(x+8\right)\left(\dfrac{1}{5}+\dfrac{1}{2}-\dfrac{1}{6}-\dfrac{1}{3}\right)< 0\)

Mà: `1/5+1/2+1/6-1/3>0`

`=>x+8<0`

`<=>x<-8` 

\(\dfrac{x-2}{1007}+\dfrac{x-1}{1008}< \dfrac{2x-1}{2017}+\dfrac{2x-3}{2015}\\ < =>\left(\dfrac{x-2}{1007}-1\right)+\left(\dfrac{x-1}{1008}-1\right)< \left(\dfrac{2x-1}{2017}-1\right)+\left(\dfrac{2x-3}{2015}-1\right)\\ < =>\dfrac{x-1009}{1007}+\dfrac{x-1009}{1008}< \dfrac{2x-2018}{2017}+\dfrac{2x-2018}{2015}\\ < =>\dfrac{x-1009}{1007}+\dfrac{x-1009}{1008}-\dfrac{2\left(x-1009\right)}{2017}-\dfrac{2\left(x-1009\right)}{2015}< 0\\ < =>\left(x-1009\right)\left(\dfrac{1}{1007}+\dfrac{1}{1008}-\dfrac{2}{2017}-\dfrac{2}{2015}\right)< 0\)

Mà: `1/1006+1/1008-2/2017-2/2015>0`

`=>x-1009<0`

`<=>x<1009`

9 tháng 8

a/

Gọi x là số phút gọi thỏa mãn đề bài

\(32+\left(x-45\right).0,4=44+0,25x\)

\(\Leftrightarrow32+0,4x-18=44+0,25x\)

\(\Leftrightarrow0,15x=30\Rightarrow x=200\)

b/

+Nếu KH gọi 180 phút trong 1 tháng thì

Số tiền cho gói cước A là \(32+\left(180-45\right).0,4=86\) USD

Số tiền cho gói cước B là \(44+180.0,25=89\) USD

Trong trường hợp này chọn gói cước A có lợi hơn

+ Trường hợp KH gọi 500 phút thì

Số tiền cho gói cước A: \(32+\left(500-45\right).0,4=214\) USD

Số tiền cho gói cước B: \(44+500.0,25=169\) USD

Trong trường hợp này chọn gói cước B có lợi hơn

 

 

 

 

9 tháng 8

a) `(x+4)(y-1)=13` 

Ta có bảng: 

     x + 4           1         -1          13             -13      
     y - 1  13   -13     1     -1
     x   -3    -5     9      -17
     y   14    -12     2      0

b) `xy-3x+y=20`

`=>(xy-3x)+(y-3)=20-3`

`=>x(y-3)+(y-3)=17`

`=>(y-3)(x+1)=17` 

Ta có bảng:

     y - 3               17           -1          -17              1         
     x + 1     1    -17    -1    17
    y    20     2    -14       4
    x     0   -18    -2     16

 

9 tháng 8

a) 10 ⋮ (x - 1)

⇒ x - 1 ∈ Ư(10) = {-10; -5; -2; -1; 1; 2; 5; 10}

⇒ x ∈ {-9; -4; -1; 0; 2; 3; 6; 11}

b) x + 5 = x - 2 + 7

Để (x - 5) ⋮ (x - 2) thì 7 ⋮ (x - 2)

⇒ x - 2 ∈ Ư(7) = {-7; -1; 1; 7}

⇒ x ∈ {-5; 1; 3; 9}

c) 3x + 8 = 3x - 3 + 11

= 3(x - 1) + 11

Để (3x + 8) ⋮ (x - 3) thì 11 ⋮ (x - 3)

⇒ x - 3 ∈ Ư(11) = {-11; -1; 1; 11}

⇒ x ∈ {-8; 2; 4; 14}

9 tháng 8

a) 25 chia hết cho n + 2

=> n + 2 ∈ Ư(25) 

=> n + 2 ∈ {1; -1; 5; -5; 25; -25}

=> n ∈ {-1; -3; 3; -7; 23; -27}  

b) 2n + 4 chia hết cho n - 1

=> (2n - 2) + 6 chia hết chi n - 1

=> 2(n - 1) + 6 chia hết cho n - 1

=> 6 chia hết cho n - 1

=> n - 1 ∈ Ư(6) = {1; -1; 2; -2; 3; -3; 6; -6}

=> n ∈ {2; 0; 3; -1; 4; -2; 7; -5} 

9 tháng 8

a) 25 ⋮ (n + 2)

⇒ n + 2 ∈ Ư(25) = {-25; -5; -1; 1; 5; 25}

⇒ n ∈ {-27; -7; -3; -1; 3; 23}

b) 2n + 4 = 2n - 2 + 6

= 2(n - 1) + 6

Để (2n + 4) ⋮ (n - 1) thì 6 ⋮ (n - 1)

⇒ n - 1 ∈ Ư(6) = {-6; -3; -2; -1; 1; 2; 3; 6}

⇒ n ∈ {-5; -2; -1; 0; 2; 3; 4; 7}

9 tháng 8

Bài 11.2 

\(a,A=3+3^2+3^3+....+3^{99}\\ =\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+....+\left(3^{97}+3^{98}+3^{99}\right)\\ =3\cdot\left(1+3+9\right)+3^4\cdot\left(1+3+9\right)+...+3^{97}\cdot\left(1+3+9\right)\\ =13\cdot\left(3+3^4+....+3^{97}\right)⋮13\\ b,B=5+5^2+...+5^{50}\\ =\left(5+5^2\right)+\left(5^3+5^4\right)+..+\left(5^{49}+5^{50}\right)\\ =5\cdot\left(1+5\right)+5^3\cdot\left(1+5\right)+....+5^{49}\cdot\left(1+5\right)\\ =6\cdot\left(5+5^3+...+5^{49}\right)⋮6\)

Bài 11.4:

a: \(10⋮x-1\)

=>\(x-1\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\)

=>\(x\in\left\{2;0;3;-1;6;-4;11;-9\right\}\)

b: 

\(x+5⋮x-2\)

=>\(x-2+7⋮x-2\)

=>\(7⋮x-2\)

=>\(x-2\in\left\{1;-1;7;-7\right\}\)

=>\(x\in\left\{3;1;9;-5\right\}\)

c: \(3x+8⋮x-1\)

=>\(3x-3+11⋮x-1\)

=>\(11⋮x-1\)

=>\(x-1\in\left\{1;-1;11;-11\right\}\)

=>\(x\in\left\{2;0;12;-10\right\}\)

Bài 11.5:

a: (x+4)(y-1)=13

=>\(\left(x+4;y-1\right)\in\left\{\left(1;13\right);\left(13;1\right);\left(-1;-13\right);\left(-13;-1\right)\right\}\)

=>\(\left(x;y\right)\in\left\{\left(-3;14\right);\left(9;2\right);\left(-5;-12\right);\left(-17;0\right)\right\}\)

b: xy-3x+y=20

=>x(y-3)+y-3=17

=>(x+1)(y-3)=17

=>\(\left(x+1;y-3\right)\in\left\{\left(1;17\right);\left(17;1\right);\left(-1;-17\right);\left(-17;-1\right)\right\}\)

=>\(\left(x;y\right)\in\left\{\left(0;20\right);\left(16;4\right);\left(-2;-14\right);\left(-18;2\right)\right\}\)

9 tháng 8

a) Ta có:

`m^2>=0` với mọi m 

`=>m^2+1/2>=1/2>0` với mọi m 

`=>` Bất pt: `(m^2+1/2)x-1<=0` có hệ số `a≠0` 

`=>`Bất pt luôn là bất pt bậc nhất 1 ẩn với mọi m 

b) Ta có:

`m^2+m+2=(m^2+2*m*1/2+1/4)+7/4` 

`=(m+1/2)^2+7/4>=7/4>=0` với mọi m

`=>-(m^2+m+2)<=-7/2<0` với mọi m

`=>-(m^2+m+2)≠0` với mọi m 

=> Bất pt `-(m^2+m+2)x<=-m+2024` luôn là bpt bậc nhất 1 ẩn