cho tam giác ABC cân tại A ( góc A < 90 độ ) . Gọi I là giao điểm của hai đường cao BD và CE
a) cm ACE=ABD
b) cm tam giác IBC là tam giác cân
c) So sánh BC và BD+CD
d ) cm IA+IB<AC+BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
Ta có ME vg AC và FH vg AC => ME//FH
Ta có EH vg BH và MF vg BH => MF//EH
=> Tứ giác MFHE là hình bình hành. Hơn nữa ^MFH=90 => MFHE là hình chữ nhật => ME=FH (cạnh đối hcn)
b/
Ta có MF//EH (cm ở trên) => ^BMF=^BCA (góc đồng vị)
Mà ^BCA=^ABC (do tg ABC cân tại A)
=> ^ABC=^BMF
Xét hai tam giác vuông DBM và tg vuông FBM có
^ABC=^BMF
Cạnh huyền BM chung
=> tg DBM=tg FBM (Hai tg vuông có cạnh huyền và 1 góc nhọn tương ứng bằng nhau) => MD=BF
c/
Ta có ME=HF và MD=BF
Mà BF+HF=BH không đổi => MD+ME=BH không đổi
a)AB=6CM
B)XÉT TAM GIAC BAI VA TAM BID ,TA CÓ;
- GÓC IAB = GÓC IDB(=90)
-IB CẠNH HUYỀN CHUNG
-GÓC ABI =GOC IBD (DO BI LA PHÂN GIÁC GÓC B0
SUY RA TAM GIAC BAI= TAM GIACIDB(GCG)
a/ ^B+^C=180-^A=180-120=60
^C=(60-30):2=15 => ^B=60-15=30
b/ Đường trung trực của BC cắt BC tại H
+Xét hai tg vuông BHE và tg vuông CHE có
HE chung và HB=HC => tg BHE=tg CHE (Hai tam giác vuông có hai cạnh góc vuông bằng nhau
=> BE=CE (1) và ^HBE=^HCE=45 (2)
+ Xét hai tg vuông HBD và tg vuông HCD có
HD chung và HB=HC => tg HBD=tg HCD (Hai tam giác vuông có hai cạnh góc vuông bằng nhau)
=> BD=CD (3) và ^HBD=^HCD=15 (4)
Từ (2) và (4) => ^EBD=^ECD=45-15=30 (5)
c/ Xét tg BED và tg ECD
Từ (1) (3) và (5) => tg BED=tg ECD (c.g.c)
A=1+3^1+3^2+...+3^2008
3A=3(1+3^1+3^2+...+3^2008)
3A=3*1+3*3^1+3*3^2+...+3*3^2008
3A=3+3^2+3^3+...+3^2009
3A-A=(3+3^2+3^3+...+3^2009)-(1+3^1+3^2+...+3^2008)
A=(3^2009-1):2
=>2A=(3^2009-1):2
<=>A=3^2009-1
vi 2 so lien tiep hon kem nhau 1 don vi
=>3^2009-1 va 3^2009 la 2 so lien tiep
=>2A va B la 2 so tu nhien lien tiep