Cho n là số nguyên dương thỏa mãn: \(C_n^2C_n^{n-2}\) \(+C_n^8C_n^{n-8}\)= \(2C_n^2C_n^{n-8}\)
Tính \(S=1^2C_n^1+2^2C_n^2+....+n^2C_n^n\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
GỌI E = {3;6}; F = {1;4;7} ; G = {2;5} ; H= {0}
LẬP 4 chữ số ABCD đôi một khác nhau
1: Chứa số 0 trong 3 chữ số B,C,D là 3 cách
Chọn 1 số trong E và F và G thì (E+F+G):3 chia hết (loại)
Chọn 2 số trong E và 1 số trong F thì (E+E+F):3 dư 1 (loại)
-Chọn 1 số trong E và 2 số trong F thì (E+F+F):3 dư 2 (1)
Từ (1) => 3 trong 2 số thuộc F : 3C2 là 3 cách
Và 1 trong 2 số thuộc E : 2C1 là 2 cách
ABCD chứa 0 thì A và 2 chữ số (không chứa 0) sắp xếp 3!
(1) Số lập được 3.3.2.3! = 108 số
-Chọn 2 số trong E và 1 số trong G thì (E+E+G):3 dư 2 (2)
Từ (2) => 2 trong 1 số thuộc G : 2C1 là 2 cách
Và 2 trong 2 số thuộc E : 2C2 là 1 cách
ABCD chứa 0 thì A và 2 chữ số (không chứa 0) sắp xếp 3!
(2) Số lập được 3.2.1.3! = 36 số
Chọn 1 số trong E và 2 số trong G thì (E+G+G):3 dư 1 (loại)
Chọn 2 số trong F và 1 số trong G thì (F+F+G):3 dư 1 (loại)
Chọn 1 số trong F và 2 số trong G thì (F+G+G):3 dư 2 (3)
Từ (3) => 3 trong 1 số thuộc F : 3C1 là 3 cách
Và 2 trong 2 số thuộc G : 2C2 là 1 cách
ABCD chứa 0 thì A và 2 chữ số (không chứa 0) sắp xếp 3!
(3) Số lập được 3.3.1.3! = 54 số
2: Không chứa 0
-Chọn 1 số trong E và F và 2 số trong G: (E+F+G+G):3 dư 2 (4)
Từ (4) => 1 số trong E : 2C1 là 2 cách và trong F : 3C1 là 3 cách
2 số trong G : 2C2 là 1 cách
ABCD thì A,B,C,D sắp xếp 4!
(4) Số lập được 2.3.1.4! = 144 số
Chọn 1 số trong E và G và 2 số trong F: (E+F+F+G):3 dư 1 (loại)
Chọn 2 số trong E và 1 số trong F và G: (E+E+F+G):3 không dư (loaị)
-Chọn 2 số trong E và F: (E+E+F+F):3 dư 2 (5)
Từ (5) => 2 số trong E: 2C2 là 1 cách và trong F: 3C2 là 3 cách
ABCD thì A,B,C,D sắp xếp 4!
(5) Số lập được 1.3.4! = 72 số
Chọn 2 số trong E và G: (E+E+G+G):3 dư 1 (loại)
Vậy từ (1),(2),(3),(4),(5) ta có 108+36+54+144+72 = 414 số
<=> Tổng cộng có 414 số thỏa mãn yêu cầu đề bài.
TH1: chọn \(1\)câu khó từ \(5\)câu: \(C^1_5\).
Chọn \(9\)câu trong đó có cả câu trung bình và câu dễ.
Ta sử dụng phần bù. Số cách là: \(C^9_{45}-C^9_{20}-C^9_{25}\).
TH cách số câu khó từ \(2\)đến \(5\)ta làm tương tự.
Khi đó có tổng số cách chọn \(10\)câu sao cho đủ 3 loại câu hỏi là:
\(C^1_5\left(C^9_{45}-C^9_{20}-C^9_{25}\right)+C^2_5\left(C^8_{45}-C^8_{20}-C^8_{25}\right)+C^3_5\left(C^7_{45}-C^7_{20}-C^7_{25}\right)\)
\(+C^4_5\left(C^6_{45}-C^6_{20}-C^6_{25}\right)+C^5_5\left(C^5_{45}-C^5_{20}-C^5_{25}\right)=7052230625\)