Mọi người giúp em bài 11 13 14 12 ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) đk: \(\hept{\begin{cases}x\ge1\\x\ne3\end{cases}}\)
\(P=\frac{x-3}{\sqrt{x-1}-\sqrt{2}}=\frac{\left(x-1\right)-2}{\sqrt{x-1}-\sqrt{2}}\)
\(=\frac{\left(\sqrt{x-1}-\sqrt{2}\right)\left(\sqrt{x-1}+\sqrt{2}\right)}{\sqrt{x-1}-\sqrt{2}}=\sqrt{x-1}+\sqrt{2}\)
b) \(x=4\left(2-\sqrt{3}\right)\Rightarrow x-1=7-4\sqrt{3}=\left(2-\sqrt{3}\right)^2\)
\(\Rightarrow P=\sqrt{x-1}+\sqrt{2}=2-\sqrt{3}+\sqrt{2}\)
Đề 1:
Câu 1: Chọn \(C.\)\(9cm\).
Câu 2: Chọn \(D.\)\(25cm\).
Câu 3: Chọn \(B.\)\(BA^2=BC.BH\).
Câu 4: Chọn \(C.\)\(\sqrt{HB.HC}\).
Đề 2:
Câu 1: Chọn \(B.\)\(8\).
Câu 2: Chọn \(B.\)\(6\).
Câu 3: Chọn \(C.\)\(8\).
Câu 4: Chọn \(A.\)\(\frac{1}{AI^2}=\frac{1}{AD^2}+\frac{1}{4HC^2}\).
Câu 1
\(AC^2=CH\cdot CB\)
\(6^2=4\cdot BC\)
\(36=4\cdot BC\)
\(BC=9\) ( Chọn C )
a) \(B=\left(\frac{\sqrt{x}}{x-4}+\frac{1}{\sqrt{x}-2}\right)\div\frac{\sqrt{x}+2}{x-4}\)
\(=\frac{\sqrt{x}+\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\frac{x-4}{\sqrt{x}+2}\)
\(=\frac{2\sqrt{x}+2}{x-4}\cdot\frac{x-4}{\sqrt{x}+2}=\frac{2\sqrt{x}+2}{\sqrt{x}+2}\)
b) \(C=A\left(B-2\right)=\frac{\sqrt{x}+2}{\sqrt{x}-2}\cdot\left(\frac{2\sqrt{x}+2}{\sqrt{x}+2}-2\right)\)
\(=\frac{\sqrt{x}+2}{\sqrt{x}-2}\cdot\frac{-2}{\sqrt{x}+2}=\frac{2}{2-\sqrt{x}}\)
Để C nguyên => \(2-\sqrt{x}\inƯ\left(2\right)\Rightarrow2-\sqrt{x}\in\left\{\pm1;\pm2\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{0;1;3;4\right\}\Leftrightarrow x\in\left\{0;1;9;16\right\}\)
\(A=\frac{\sqrt{x}+2}{\sqrt{x}-2}\left(x\ge0,x\ne4\right)\)
\(A=\frac{\sqrt{x}-2+4}{\sqrt{x}-2}=1+\frac{4}{\sqrt{x}-2}\)
+ Nếu x ko là SCP
=> \(\sqrt{x}\notin Z\Rightarrow\frac{4}{\sqrt{x}-2}\notin Z\) (loại)
+ Nếu x là SCP
\(\Rightarrow\sqrt{x}-2\in Z\)
Để A nguyên thì \(\frac{4}{\sqrt{x}-2}\in Z\)
Hay \(\sqrt{x}-2\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Bạn tự lm tiếp nha
\(11:\)
\(\frac{-\sqrt{2}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}=-\sqrt{2}\left(B\right)\)
\(12:B\)
\(13:\sqrt{25x}-\sqrt{9x}=8\)
\(\sqrt{25}\sqrt{x}-\sqrt{9}\sqrt{x}=8\)
\(\sqrt{x}\left(5-3\right)=8\)
\(\sqrt{x}=4< =>x=16\left(C\right)\)
\(14:\frac{4}{\sqrt{5}-1}-\sqrt{5}\)
\(\frac{4-5+\sqrt{5}}{\sqrt{5}-1}\)
\(\frac{\sqrt{5}-1}{\sqrt{5}-1}=1\left(B\right)\)
\(15:\)
\(-\sqrt{a^2\frac{b}{a}}\)
\(-\sqrt{a.b}\left(C\right)\)
\(1:4\left(B\right)\)
\(16:\sqrt{12}-\sqrt{27}+\sqrt{3}\)
\(\sqrt{3}\left(\sqrt{4}-\sqrt{9}+1\right)\)
\(\sqrt{3}\left(2-3+1\right)=0\left(B\right)\)
\(17:\sqrt{18}+\frac{2}{\sqrt{2}}-3\sqrt{8}\)
\(\sqrt{2}\left(\sqrt{9}+1-3\sqrt{4}\right)\)
\(\sqrt{2}.2=2\sqrt{2}\left(D\right)\)
\(18:\sqrt{x^2}=\left|x\right|=13\)
\(x=\pm13\left(D\right)\)
\(19:\left|x-1\right|\left(C\right)\)
\(20:\sqrt{9-4\sqrt{5}}=\sqrt{\left(\sqrt{5}-2\right)^2}\)
\(\left|\sqrt{5}-2\right|=\sqrt{5}-2\left(B\right)\)
hok tốt
\(1:x< 0\left(B\right)\)
\(2:\left(D\right)\)
\(3:x< 2021\left(C\right)\)
\(4:x\ge15\left(D\right)\)
\(5:\)để pt có nghĩa thì 2x-5>0
\(2x>5< =>x>\frac{5}{2}\)
chọn (C)
\(6:\frac{1}{2}\sqrt{20}-\sqrt{\left(2-\sqrt{5}\right)^2}\)
\(\frac{1}{2}\sqrt{20}-\sqrt{5}+2\)
\(\sqrt{5}-\sqrt{5}+2=2\)
chọn (B)
\(7:\frac{6xy^2}{x^2-y^2}\sqrt{\frac{\left(x-y\right)^2}{\left(3xy^2\right)^2}}\)
\(\frac{6xy^2}{x^2-y^2}\frac{x-y}{3xy^2}\)
\(\frac{2}{x+y}\)
chọn (B)
\(8:\left(1+\frac{3-\sqrt{3}}{\sqrt{3}-1}\right)\left(\frac{3+\sqrt{3}}{\sqrt{3}+1}-1\right)\)
\(\left(1+\frac{\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}\right)\left(\frac{\sqrt{3}\left(\sqrt{3}+1\right)}{\sqrt{3}+1}-1\right)\)
\(\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)\)
\(\sqrt{3}^2-1^2=3-1=2\)
chọn (D)
\(9:M=\left|1-\sqrt{3}\right|+\left|1-\sqrt{3}\right|\)
\(M=\sqrt{3}-1+\sqrt{3}-1\)
\(M=2\sqrt{3}-2\)
chọn (A)
\(10:\sqrt{4+\sqrt{x^2-1}}=2\)
\(4+\sqrt{x^2-1}=2^2=4\)
\(\sqrt{x^2-1}=0\)
\(x^2-1=0< =>x=1\)
chọn (A)