6a5, môn toán của tôi không bao giờ sai nhưng chỉ có bài này cô cho tôi làm bài này à hơi khó 1 tí !
S=1+2+22+23+...+229
Cmr S chia hết cho 7
Và câu bài toán tiếp theo đây:
2x+1+2x.3=320 hãy tính bài này !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Gọi số học sinh của lớp là $a$ (hs). ĐK: $40< a< 50$.
Theo bài ra ta có:
$a+1\vdots 2; a+2\vdots 3; a+3\vdots 4$
$\Rightarrow a-1\vdots 2,3,4$
$\Rightarrow a-1=BC(2,3,4)$
$\Rightarrow a-1\vdots BCNN(2,3,4)$
$\Rightarrow a-1\vdots 12$
$\Rightarrow a-1\in \left\{0; 12; 24; 36; 48; 60;....\right\}$
$\Rightarrow a\in \left\{1; 13; 25; 37; 49; 61;...\right\}$
Mà $40< a< 50$ nên $a=49$ (học sinh)
Câu 1: Vì p và 10p + 1 là các số nguyên tố lớn hơn 3 nên p ≠ 2 vậy p là các số lẻ.
Ta có: 10p + 1 - p = 9p + 1
Vì p là số lẻ nên 9p + 1 là số chẵn ⇒ 9p + 1 = 2k
17p + 1 = 8p + 9p + 1 = 8p + 2k = 2.(4p + k) ⋮ 2
⇒ 17p + 1 là hợp số (đpcm)
Câu 1:
Vì $p$ là stn lớn hơn $3$ nên $p$ không chia hết cho $3$. Do đó $p$ có dạng $3k+1$ hoặc $3k+2$.
Nếu $p=3k+2$ thì:
$10p+1=10(3k+2)+1=30k+21\vdots 3$
Mà $10p+1>3$ nên không thể là số nguyên tố (trái với giả thiết)
$\Rightarrow p$ có dạng $3k+1$.
Khi đó:
$17p+1=17(3k+1)+1=51k+18=3(17k+6)\vdots 3$. Mà $17p+1>3$ nên $17p+1$ là hợp số
(đpcm)
Do ƯCLN(a; b) = 5 nên đặt a = 5x; b = 5y (x và y nguyên tố cùng nhau)
Do a + b = 300
⇒ 5x + 5y = 300
⇒ 5(x + y) = 300
⇒ x + y = 60
⇒ (x; y) ∈ {(1; 59); (7; 53); (11;49); (13; 47); (17; 43); (19; 41); (23; 37); (29; 31); (31; 29); (37; 23); (41; 19); (43; 17); (47; 13); (49; 11); (53; 7); (59; 1)}
⇒ (a; b) ∈ {(5; 295); (35; 265); (55; 245); (65; 235); (85; 215); (95; 205); (115; 185); (145; 155); (155; 145); (185; 115); (205; 95); (215; 85); (235; 65); (245; 55); (265; 35); (295; 5)}
Do ƯCLN(a; b) = 5 nên đặt a = 5x; b = 5y (x và y nguyên tố cùng nhau)
Do a + b = 300
⇒ 5x + 5y = 300
⇒ 5(x + y) = 300
⇒ x + y = 60
⇒ (x; y) ∈ {(1; 59); (7; 53); (11;49); (13; 47); (17; 43); (19; 41); (23; 37); (29; 31); (31; 29); (37; 23); (41; 19); (43; 17); (47; 13); (49; 11); (53; 7); (59; 1)}
⇒ (a; b) ∈ {(5; 295); (35; 265); (55; 245); (65; 235); (85; 215); (95; 205); (115; 185); (145; 155); (155; 145); (185; 115); (205; 95); (215; 85); (235; 65); (245; 55); (265; 35); (295; 5)}
Lời giải:
$P=1-3^2+3^4-3^6+...+3^{96}-3^{98}$
$3^2P=3^2-3^4+3^6-3^8+...+3^{98}-3^{100}$
$\Rightarrow P+3^2P=1-3^{100}$
$\Rightarrow 10P=1-3^{100}$
$\Rightarrow 1-10P=3^{100}=(3^{50})^2$ là số chính phương.
Ta có đpcm.
\(S=1+2+2^2+2^3+...+2^{29}\)
\(S=\left(1+2+2^2\right)+\left(2^3+2^4+2^5\right)+...+\left(2^{27}+2^{28}+2^{29}\right)\)
\(S=7+2^3.\left(1+2+2^2\right)+...+2^{27}.\left(1+2+2^2\right)\)
\(S=7+2^3.7+...+2^{27}.7\)
\(S=7.\left(1+2^3+...+2^{27}\right)\)
Vì \(7⋮7\) nên \(7.\left(1+2^3+...+2^{27}\right)⋮7\)
Vậy \(S⋮7\)
______
\(2^{x+1}+2^x.3=320\)
\(=>2^x.2+2^x.3=320\)
\(=>2^x.\left(2+3\right)=320\)
\(=>2^x.5=320\)
\(=>2^x=320:5\)
\(=>2^x=64=2^6\)
\(=>x=6\)
\(#NqHahh\)
\(#Nulc`\)
mình cho thử thôi chứ mình biết