Tìm các nghiệm (x;y) của bất phương trình \(\dfrac{x}{3}+\dfrac{y}{4}\le1\), trong đó x, y là số nguyên dương.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x + 6)(x + 3)(x + 9)(x + 2) = 5x2
<=> (x2 + 9x + 18).(x2 + 11x + 18) = 5x2
<=> (x2 + 10x + 18 - x)(x2 + 10x + 18 + x) = 5x2
<=> (x2 + 10x + 18)2 - x2 = 5x2
<=> (x2 + 10x + 18)2 = 6x2
<=> \(\left[{}\begin{matrix}x^2+10x+18=\sqrt{6}x\\x^2+10x+18=-\sqrt{6}x\end{matrix}\right.\)
Với \(x^2+10x+18=\sqrt{6}x\Leftrightarrow x^2+\left(10-\sqrt{6}\right)x+18=0\)
\(\Delta=\left(10-\sqrt{6}\right)^2-72=34-20\sqrt{6}< 0\)
=> Phương trình vô nghiệm
Với \(x^2+10x+18=-\sqrt{6}x\Leftrightarrow x^2+\left(10+\sqrt{6}\right)x+18=0\)
\(\Delta=\left(10+\sqrt{6}\right)^2-72=34+20\sqrt{6}\) > 0
Phương trình có 2 nghiệm \(x=\dfrac{-10-\sqrt{6}\pm\sqrt{34+20\sqrt{6}}}{2}\)
\(\left(x+6\right)\left(x+3\right)\left(x+9\right)\left(x+2\right)=5x^2\)
\(\Leftrightarrow\left(x^2+3x+6x+18\right)\left(x^2+2x+9x+18\right)=5x^2\)
\(\Leftrightarrow\left(x^2+9x+18\right)\left(x^2+11x+18\right)=5x^2\)
\(\Leftrightarrow x^4+11x^3+18x^2+9x^3+99x^2+162x+18x^2+198x+324=5x^2\)
\(\Leftrightarrow x^4+20x^3+135x^2+360x+324=5x^2\)
\(\Leftrightarrow x^4+20x^3+130x^2+360x+324=0\)
\(\Leftrightarrow x\in\varnothing\)
1.TH1 : \(B\subset A\Leftrightarrow\left\{{}\begin{matrix}m-1\ge1\\2m\le6\end{matrix}\right.\Leftrightarrow2\le m\le3\) (*)
Mặt khác \(B\subset A\Leftrightarrow B=\varnothing\Leftrightarrow m-1\ge2m\Leftrightarrow m\le-1\)(**)
Từ (*) ; (**) ta được với \(\left[{}\begin{matrix}m\le-1\\2\le m\le3\end{matrix}\right.\) thì \(B\subset A\)
Vậy có vô số giá trị nguyên để \(B\subset A\)
2. \(A\cap B\ne\varnothing\Leftrightarrow2m+1< -1\Leftrightarrow m< -1\)
3. \(\left\{{}\begin{matrix}A\ne\varnothing\\B\ne\varnothing\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m-2\le6\\2m+2>-2\end{matrix}\right.\Leftrightarrow-2< m\le8\) (1)
\(A\subset B\Leftrightarrow\left\{{}\begin{matrix}m-2\ge-2\\2m+2>6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\ge0\\m>2\end{matrix}\right.\Leftrightarrow m>2\) (2)
từ (1) và (2) ta được \(2< m\le8\) thì \(A\subset B\)
4. Vì \(B\ne\varnothing\forall a\) nên \(A\cap B=\varnothing\)\(\Leftrightarrow\left[{}\begin{matrix}a\ge3\\a+3< -1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a\ge3\\a< -4\end{matrix}\right.\)
5. Vì \(B\ne\varnothing\forall m\) nên \(A\cap B=\varnothing\)\(\Leftrightarrow\left[{}\begin{matrix}m-3\ge14\\m\le4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m\ge17\\m\le4\end{matrix}\right.\)
c ơi thay đổi được mà c
c vào ( thông tin tài khoản ) ở trong đó có chỗ ghi là (cài đặt tài khoản ) rồi c nhấn vào đó,có chữ ghi là (chọn trường ) ý c rồi c chọn trường thôi ạ
chúc c làm thành công ạ
c tick cho e nha
Nguyễn Hà Phương thanh kiu bé nma chị thử rồi, k có được
Để lập Bảng Bảng Tiến trình (BBT) và vẽ đồ thị cho từng hàm số, ta tiến hành theo các bước sau:
a. y = x^2 - 4x + 3
Đầu tiên, ta lập BBT bằng cách tạo một bảng với các cột cho giá trị của x, giá trị của hàm số y tương ứng và sau đó tính giá trị của y bằng cách thay các giá trị của x vào công thức của hàm số.
x | y-2 | 15 -1 | 8 0 | 3 1 | 0 2 | -1 3 | 0 4 | 3 5 | 8
Sau khi lập BBT, ta có thể vẽ đồ thị bằng cách vẽ các điểm (x, y) tương ứng trên hệ trục tọa độ.
b. y = -x^2 + 2x - 3
Lập BBT:
x | y-2 | -11 -1 | -6 0 | -3 1 | -2 2 | -3 3 | -6 4 | -11
Vẽ đồ thị.
c. y = x^2 + 2x
Lập BBT:
x | y-2 | 0 -1 | 0 0 | 0 1 | 3 2 | 8 3 | 15 4 | 24
Vẽ đồ thị.
d. y = -2x^2 - 2
Lập BBT:
x | y-2 | -6 -1 | -4 0 | -2 1 | -4 2 | -10 3 | -18 4 | -28
Vẽ đồ thị.
Sau khi lập BBT và vẽ đồ thị cho từng hàm số, bạn có thể dễ dàng quan sát và phân tích các đặc điểm của đồ thị như điểm cực trị, đồ thị hướng lên hay hướng xuống, đồ thị cắt trục hoành và trục tung ở những điểm nào, và các đặc tính khác của hàm số.
2 trên 20
Cách 1 (đồ thị): Đầu tiên ta xác định miền nghiệm của hệ bất phương trình sau: \(\left\{{}\begin{matrix}x>0\\y>0\\\dfrac{x}{3}+\dfrac{y}{4}\le1\end{matrix}\right.\) như sau:
Sau đó ta tìm tất cả các điểm nguyên nằm ở miền trong tam giác OAB. Ta nhận thấy các điểm này là \(\left(1,1\right);\left(1,2\right);\left(2,1\right)\). Vậy các nghiệm (x; y) của bpt là \(\left(1;1\right),\left(1;2\right),\left(2;1\right)\)
Cách 2: (đại số)
Ta có \(\dfrac{x}{3}+\dfrac{y}{4}\le1\) nên \(\dfrac{x}{3}< 1\) \(\Leftrightarrow x< 3\) \(\Rightarrow x\in\left\{1,2\right\}\)
\(\dfrac{y}{4}< 1\Rightarrow y< 4\Rightarrow y\in\left\{1,2,3\right\}\)
Thử lại, ta thấy chỉ có các cặp \(\left(x;y\right)=\left(1;1\right),\left(1;2\right),\left(2;1\right)\) là thỏa mãn. Vậy...