K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2

c) Dễ thấy M, O là tâm của đường tròn (ADHE) và (BEDC). Gọi bán kính của đường tròn (ADHE) là \(R\)

 Gọi T là giao điểm của OM và DE.

 Ta thấy vì \(OD=OE,MD=ME\) nên OM là trung trực của DE \(\Rightarrow OM\perp DE\) tại T

 Xét tam giác MTK và MFO, có:

 \(\widehat{FMO}\) chung, \(\widehat{MTK}=\widehat{MFO}=90^o\)

 \(\Rightarrow\Delta MTK~\Delta MFO\left(g.g\right)\)

 \(\Rightarrow\dfrac{MT}{MF}=\dfrac{MK}{MO}\)

 \(\Rightarrow MT.MO=MF.MK\)

 Tam giác MDO vuông tại D có đường cao DT nên \(MT.MO=MD^2\)

 \(\Rightarrow MF.MK=MD^2\) \(=R^2\)

 \(\Rightarrow MK=\dfrac{R^2}{MF}\) \(=\dfrac{R^2}{R+HF}\)

Do đó \(VP=2MK\left(AF+HF\right)\)

\(=\dfrac{2R^2}{R+HF}\left(2R+2HF\right)\) (thế \(AF=AH+HF=2R+HF\))

\(=4R^2\)

\(=AH^2=VT\)

Vậy ta có đpcm.

14 tháng 2

giúp tui câu c nha!

 

14 tháng 2

a) Nhận thấy \(\widehat{OBK}=\widehat{OAK}=90^o\) \(\Rightarrow\) Tứ giác OAKB nội tiếp đường tròn (OK).

Mặt khác \(\widehat{OHK}=90^o\) nên \(H\in\left(OK\right)\)

\(\Rightarrow\) 5 điểm A, B, O, K, H cùng thuộc đường tròn (OK).

b) Từ câu a) \(\Rightarrow\) Tứ giác OAHB nội tiếp 

\(\Rightarrow\widehat{IHB}=\widehat{IAO}\)

Từ đó dễ dàng chứng minh \(\Delta IHB~\Delta IAO\left(g.g\right)\)

\(\Rightarrow\dfrac{IH}{IA}=\dfrac{IB}{IO}\) \(\Rightarrow IA.IB=IH.IO\) (đpcm)

c) Gọi T là giao điểm của OK và AB.

Tính chất của 2 tiếp tuyến cắt nhau \(\Rightarrow OK\perp AB\) tại T

Tam giác OAK vuông tại A có đường cao AT nên \(OT.OK=OA^2\) (hệ thức lượng trong tam giác vuông)

Xét tam giác OTI và OHK, ta có:

\(\widehat{HOK}\) chung , \(\widehat{OTI}=\widehat{OHK}=90^o\)

 \(\Rightarrow\Delta OTI~\Delta OHK\left(g.g\right)\)

 \(\Rightarrow\dfrac{OT}{OH}=\dfrac{OI}{OK}\)

 \(\Rightarrow OT.OK=OH.OI\)

Mà \(OT.OK=OA^2\) (cmt) \(\Rightarrow OH.OI=OA^2\)

\(\Rightarrow OI=\dfrac{OA^2}{OH}\) là một hằng số 

\(\Rightarrow\) I thuộc đường tròn \(\left(O;\dfrac{OA^2}{OH}\right)\) cố định

Hơn nữa I nằm trên đường thẳng OH cố định nên I cố định

\(\Rightarrow\) AB đi qua I cố định.

3 tháng 3

khó thế con Phương kia

13 tháng 2

tịt

Bạn Lý Bình Minh không đăng linh tinh!

Nếu không, mình sẽ báo cáo!

AH
Akai Haruma
Giáo viên
29 tháng 2

Lời giải:

\(A=\frac{\sqrt{x}(\sqrt{x}-3)}{(\sqrt{x}-3)(\sqrt{x}+3)}+\frac{\sqrt{x}+3}{(\sqrt{x}-3)(\sqrt{x}+3)}-\frac{4\sqrt{x}-6}{(\sqrt{x}-3)(\sqrt{x}+3)}\\ =\frac{\sqrt{x}(\sqrt{x}-3)+\sqrt{x}+3-(4\sqrt{x}-6)}{(\sqrt{x}-3)(\sqrt{x}+3)}\\ =\frac{x-6\sqrt{x}+9}{(\sqrt{x}-3)(\sqrt{x}+3)}=\frac{(\sqrt{x}-3)^2}{(\sqrt{x}-3)(\sqrt{x}+3)}\\ =\frac{\sqrt{x}-3}{\sqrt{x}+3}\)

\(A=\dfrac{2021x+2022\sqrt{1-x^2}+2023}{\sqrt{1-x^2}}\)

\(A=2022+\dfrac{2021x+2023}{\sqrt{1-x^2}}\)

Xét \(\dfrac{2021x+2023}{\sqrt{1-x^2}}\)

\(\dfrac{2021x+2023}{\sqrt{1-x^2}}\ge2\sqrt{2022}\) 

\(\Rightarrow A\ge2022+2\sqrt{2022}\)

\(A\ge2\left(1011+\sqrt{2022}\right)\)

Dấu "=" xảy ra khi \(x=-\dfrac{2021}{2023}\)

12 tháng 2

\(\left\{{}\begin{matrix}8x^3y^3+27=18y^3\left(1\right)\\4x^2y+6x=y^2\left(2\right)\end{matrix}\right.\)

pt (2) \(\Leftrightarrow4x^2y^2+6xy=y^3\) (3)

Thế (3) vào (1), ta được \(8x^3y^3+27=18\left(4x^2y^2+6xy\right)\)

\(\Leftrightarrow8\left(xy\right)^3-72\left(xy\right)^2-108xy+27=0\) (4)

Đặt \(xy=t\) thì (4) thành

\(8t^3-72t^2-108t+27=0\)

\(\Leftrightarrow8t^3+12t^2-84t^2-126t+18t+27=0\)

\(\Leftrightarrow4t^2\left(2t+3\right)-42t\left(2t+3\right)+9\left(2t+3\right)=0\)

\(\Leftrightarrow\left(2t+3\right)\left(4t^2-42t+9\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=-\dfrac{3}{2}\\t=\dfrac{21\pm9\sqrt{5}}{4}\end{matrix}\right.\)

Xét \(t=-\dfrac{3}{2}\) \(\Rightarrow xy=-\dfrac{3}{2}\) . Thay vào (2), ta có:

\(y^3=4\left(xy\right)^2+6xy\) \(=4\left(-\dfrac{3}{2}\right)^2+6\left(-\dfrac{3}{2}\right)=0\)  

\(\Leftrightarrow y=0\) \(\Leftrightarrow x=0\)

Nếu \(t=\dfrac{21+9\sqrt{5}}{4}\) thì \(xy=\dfrac{21+9\sqrt{5}}{4}\). Thay vào (2), ta có:

\(y^3=4\left(\dfrac{21+9\sqrt{5}}{4}\right)^2+6\left(\dfrac{21+9\sqrt{5}}{4}\right)\) \(\Rightarrow y=...\Rightarrow x=...\)

Xét tương tự với \(t=\dfrac{21-9\sqrt{5}}{4}\)

Vậy ...

 

12 tháng 2

 Với lại bạn cần loại nghiệm \(x=y=0\) nhé vì nó không thỏa mãn pt (1).