cho hai so huu ti a/b va c/d voi mau duong, trong do a/b < c/d . chung minh rang :
a . ad < bc b . a/b < a+c / b+d < c/d
giup mk nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Cách 1:
Ta có : x + y = xy
<=> x = xy - y
<=> x = y(x - 1)
<=> x/y = x - 1
<
V=> x + y = x - 1
=> y = -1
Có y = -1 , ta có thể tính được x :
Ta có :
x + y = xy
<=> x - 1 = -x
<=> 2x = 1
=> x = 1/2
Vậy x = 1/2 ; y = -1
Cách 2 : Tham khảo nhé :
xy = x/y <=> x = 0 hoặc y² = 1
TH1: x = 0
=> 0 + y = 0 <=> y = 0 (loại)
TH2: y = 1
=> x + 1 = x <=> 1 = 0 (loại)
TH3: y = -1
=> x - 1 = -x <=> x = 1/2
=> x = 1/2 và y = -1
Cách 3 :
x+y > 0 và 1/x + 1/y = (x+y)/xy > 0 => xy > 0 mà x+y > 0 => x > 0, y > 0
đặt x = a/b ; y = c/d với a, b, c, d nguyên dương; (a,b) = 1 ; (c,d) = 1
Có:
x+y = a/b + c/d = (ad+bc)/bd = m
1/x+1/y = b/a + d/c = (ad+bc)/ac = n ; với m, n nguyên dương
=> { ad + bc = mbd (1*)
---- { ad + bc = nac (2*)
*-* (2*) => d + bc/a = nc => bc chia hết cho a
mà a và b nguyên tố cùng nhau (hay kí hiệu là (a,b) = 1) nên c chia hết cho a
*-* (2*) => ad/c + b = na => ad chia hết cho c
lại có (d,c) = 1 nên a chia hết cho c
từ hai điều trên ta có a = c
*-* (1*) => ad/b + c = md => ad chia hết cho b
mà (a,b) = 1 nên d chia hết cho b
*-* (1*) => a + bc/d = mb => bc chia hết cho d
cũng có (c,d) = 1 nên b chia hết cho d
từ 2 điều trên (b chia hết cho d và d chia hết cho b) => b = d
từ đây ta có kết luận: x = a/b = c/d = y
ta ghi lại giả thiết:
x+y = 2x = 2(a/b) = m (1**)
1/x + 1/y = 2/x = 2(b/a) = n (2**)
lấy (1**) * (2**) => 4 = mn ; với m, n nguyên dương ta có các khã năng là:
* m = n = 2 => 2x = 1 => x = 1
* { m = 1 ; n = 4 => { 2x = 1 ; 2/x = 4 => x = 1/2
* { m = 4 ; n = 1 => { 2x = 4 ; 2/x = 1 => x = 2
tóm lại có 3 cặp số hữu tỉ (x, y) thỏa mản là: (1,1) ; (1/2, 1/2) ; (2,2)
Bài 2:
a) M=[(2/193−3/386).193/17+33/34]:[(7/2001+11/4002).2001/25+9/2]
=[(4/386−3/386).193/17+33/34]:[(14/4002+11/4002).2001/25+9/2]
=(1/193.2.193/17+33/34):(25/2.2001.2001/25+9/2)
=(1/34+33/34):(1/2+9/2)
=1:5=1/5
a) <=>(x+1)(1/10 + 1/11+1/12) =(x+1)(1/13 + 1/14)
<=>(x+1)(1/10 + 1/11+1/12 -1/13 -1/14)=0
<=> x+1=0(vì biểu thức 1/10 + 1/11 +1/12-1/13-1/14#0)
<=>x= -1
b) (x+4)/2000 + (x+3)/2001 = (x+2)/2002 + (x+1)/2003
<=> (x+4)/2000 + 1 + (x+3)/2001 +1 = (x+2)/2002 + 1 + (x+1)/2003 + 1 (thêm 2 vào mỗi vế )
<=> (x+4+2000)/2000 + (x+3+2001)/2001 = (x+2+2002)/2002 + (x+1+2003)/2003
<=> (x+2004)/2000 + (x+2004)/2001 - (x+2004)/2002 - (x+2004)/2003 = 0 ( chuyển vế )
<=> (x+2004)(1/2000 + 1/2001 - 1/2002 - 1/2003) = 0 ( nhóm hạng tử x + 2004)
vậy biể thức trên bằng 0 tại x+2004 = 0 hoặc 1/2000 + 1/2001 - 1/2002 - 1/2003 = 0
mà ta dễ thấy 1/2000 + 1/2001 - 1/2002 - 1/2003 khác 0
nên biểu thức trên bằng 0 tại x+2004=0
=> x = -2004
vậy S = { -2004}
a/ \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
\(\Rightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)
\(\Rightarrow\left(x+1\right).\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)
Mà: \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\ne0\Rightarrow x+1=0\Rightarrow x=-1\)
1 sản phẩm công nhân đó làm trong:
45:15=3(phút)
Trong 150 phút công nhân đó làm được:
150:3=50(sản phẩm)
Đáp số: 50 sản phâm
nhấn vào đây: Câu hỏi của NgôLộc Thiên Dii - Toán lớp 7 - Học toán với OnlineMath
chúc bạn học tốt!!!! ^^
54775685785787623522543534456456565445756765567658563456346363463465645457
a)A = 1 / (1*2) + 1 / (3*4) + ... + 1 / (99*100) > 1 / (1*2) + 1 / (3*4) = 1 / 2 + 1 / 12 = 7 / 12 ♦
A = 1 / (1*2) + 1 / (3*4) + ... + 1 / (99*100) = (1 - 1 / 2) + (1 / 3 - 1 / 4) + ... + (1 / 99 - 100) =
(1 - 1 / 2 + 1 / 3) - (1 / 4 - 1 / 5) - (1 / 6 - 1 / 7) - ... - (1 / 98 - 1 / 99) - 1 / 100 <
1 - 1 / 2 + 1 / 3 = 5 / 6 ♥
♦, ♥ => 7 / 12 < A < 5 / 6
b)ta có:
1/1.2+1/3.4+1/5.6+...+1/49.50
=>1-1/2+1/3-1/4+1/5-1/6+...+1/49-1/50
=>(1+1/3+1/5+1/7+...+1/49)-(1/2+1/4+1/6+...+1/50)
=>(1+1/2+1/3+...+1/49+1/50)-(1/2+1/4+1/6+...+1/50).2
=>(1+1/2+1/3+...+1/49+1/50) -( 1+1/2+1/3+...+1/25)
=>1/26+1/27+1/28+...+1/50=1/26+1/27+1/28+...+1/50
hay 1/1.2+1/3.4+1/5.6+...+1/49.50=1/26+1/27+1/28+...+1/50
a, Vì b,d > 0 -> ad/bd < cb/bd -> ad<bc
b, ad<bc -> ad/bd < bc/bd ( vì b,d > 0 => bd>0) => a/b < c/d
a) \(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\)
b) \(ad< bc\Leftrightarrow ad+ab< bc+ab\)
\(\Leftrightarrow a\left(b+d\right)< b\left(a+c\right)\)
\(\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\) (1)
\(ad< bc\Leftrightarrow ad+cd< bc+cd\)
\(\Leftrightarrow d\left(a+c\right)< c\left(b+d\right)\)
\(\Leftrightarrow\frac{a+c}{b+d}< \frac{c}{d}\) (2)
Từ (1) và (2) suy ra: \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)