125x8=.....
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bất đẳng thức cần chứng minh viết lại thành:
\(\frac{\left(a+b\right)^3}{\left(b+c\right)^3}+\frac{\left(a+c\right)^3}{\left(b+c\right)^3}+\frac{3\left(a+b\right)\left(a+c\right)\left(b+c\right)}{\left(b+c\right)^3}\le5\)
Đặt: \(x=\frac{a+b}{b+c};y=\frac{a+c}{b+c}\), bất đẳng thức chứng minh trở thành:
\(x^3+y^3+3xy\le5\)
Ta có:
\(xy=\frac{a+b}{b+c}+\frac{a+c}{b+c}=\frac{\left(a+b\right)\left(a+c\right)}{\left(b+c\right)^2}\)
\(=\frac{a\left(a+b+c\right)+bc}{\left(b+c\right)^2}=\frac{2a\left(a+b+c\right)-2bc}{\left(b+c\right)^2}\)
Vậy ta được: \(xy+1=\frac{\left(a+b\right)^2+\left(a+c\right)^2}{\left(b+c\right)^2}=x^2+y^2\)
\(x^3+y^3=x+y\)nên \(x^3+y^3+3xy\le5\Leftrightarrow x+y+3xy\le5\)
Mà ta có: \(\left(x+y\right)^2\le2\left(x^2+y^2\right)=\frac{xy+1}{2}\le\frac{1}{2}+\frac{\left(x+y\right)^2}{8}\)
\(\Rightarrow x+y\le2\Rightarrow xy\le1\)
Do đó ta được: \(x+y+3xy\le5\). Vậy bài toán đã được chứng minh.
Diện tích cạnh của hình lập phương thứ 1 là
150 : 6 = 25 (m2)
Vì cạnh x cạnh = 25 nên cạnh của hình lập phương thứ 1 là 5 m
Diện tích cạnh của hình lập phương thứ 2 là
3750 : 6 = 625 (m2)
Vì cạnh x cạnh =625 nên cạnh của hình lập phương thứ 2 là 25 m
Độ dài cạnh của hình lập phương thứ 2 gấp số lần đội dài cạnh của hình lập phương thứ 1 là
25 : 5=5(lần)
Đáp số : 5 lần
125 x 8 = 1000 nhé
125x8=1000