\(\dfrac{1}{99}-\dfrac{1}{97.99}-\dfrac{1}{95.97}-\dfrac{1}{93.95}-...-\dfrac{1}{3.5}-\dfrac{1}{1.3}\)
Giúp mik câu này với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dữ liệu cuối cùng nhìn khó hiểu thế em? là phân số, số thập phân em ơi?
vì 5/2 = 2,5 nên những số đo chiều cao của tầng hầm phù hợp với dự định của cô Hạnh là: 2,56m;2,59m;2,6m.
a) Do M là trung điểm của BC (gt)
\(\Rightarrow MB=MC\)
Xét \(\Delta AMB\) và \(\Delta DMC\) có:
\(MB=MC\left(cmt\right)\)
\(\widehat{AMB}=\widehat{DMC}\) (đối đỉnh)
\(MA=MD\left(gt\right)\)
\(\Rightarrow\Delta AMB=\Delta DMC\left(c-g-c\right)\)
b) Do N là trung điểm của AC (gt)
\(\Rightarrow NA=NC\)
Xét \(\Delta ANB\) và \(\Delta CNE\) có:
\(NA=NC\left(cmt\right)\)
\(\widehat{ANB}=\widehat{CNE}\) (đối đỉnh)
\(NB=NE\left(gt\right)\)
\(\Rightarrow\Delta ANB=\Delta CNE\left(c-g-c\right)\)
\(\Rightarrow\widehat{ABN}=\widehat{CEN}\) (hai góc tương ứng)
Mà \(\widehat{ABN}\) và \(\widehat{CEN}\) là hai góc so le trong
\(\Rightarrow AB\) // \(CE\)
c) Do \(\Delta AMB=\Delta DMC\left(cmt\right)\)
\(\Rightarrow\widehat{BAM}=\widehat{CDM}\) (hai góc tương ứng)
Mà \(\widehat{BAM}\) và \(\widehat{CDM}\) là hai góc so le trong
\(\Rightarrow AB\) // \(CD\)
Mà \(AB\) // \(CE\left(cmt\right)\)
Theo tiên đề Ơclit \(\Rightarrow E,C,D\) thẳng hàng
a: \(A=\left(x^2y\right)\cdot\left(xy^2\right)\cdot\left(-x^3y^2\right)\)
\(=-x^2\cdot x\cdot x^3\cdot y\cdot y^2\cdot y^2\)
\(=-x^6y^5\)
Bậc là 6+5=11
Để \(\dfrac{3-x}{5}>0\) thì 3-x>0
=>x<3
=>\(x\in\left\{...;1;2;3\right\}\)
1) \(\dfrac{4^2}{2^3}=\dfrac{\left(2^2\right)^2}{2^3}=\dfrac{2^4}{2^3}=2\)
2) \(\dfrac{25^5}{125^3}=\dfrac{\left(5^2\right)^5}{\left(5^3\right)^3}=\dfrac{5^{10}}{5^9}=5\)
3) \(\dfrac{27^6}{9^9}=\dfrac{\left(3^3\right)^6}{\left(3^2\right)^9}=\dfrac{3^{18}}{3^{18}}=1\)
4) \(\dfrac{16^{13}}{32^{10}}=\dfrac{\left(2^4\right)^{13}}{\left(2^5\right)^{10}}=\dfrac{2^{52}}{2^{50}}=2^2-4\)
5) \(\dfrac{16^5}{64^4}=\dfrac{\left(4^2\right)^5}{\left(4^3\right)^4}=\dfrac{4^{10}}{4^{12}}=\dfrac{1}{4^2}=\dfrac{1}{16}\)
6) \(\dfrac{81^8}{27^{11}}=\dfrac{\left(3^4\right)^8}{\left(3^3\right)^{11}}=\dfrac{3^{32}}{3^{33}}=\dfrac{1}{3}\)
7) \(\dfrac{6^3}{2^3}=\dfrac{2^3\cdot3^3}{2^3}=3^3=27\)
8) \(\dfrac{5^4}{15^3}=\dfrac{5^4}{3^3\cdot5^3}=\dfrac{5}{3^3}=\dfrac{5}{27}\)
9) \(\dfrac{7^{15}}{14^{13}}=\dfrac{7^{15}}{7^{13}\cdot2^{13}}=\dfrac{7^2}{2^{13}}=\dfrac{49}{2^{13}}\)
10) \(\dfrac{\left(-2\right)^6}{24^2}=\dfrac{2^6}{8^2\cdot3^2}=\dfrac{2^6}{\left(2^3\right)^2\cdot3^2}=\dfrac{2^6}{2^6\cdot3^2}=\dfrac{1}{3^2}=\dfrac{1}{9}\)
11: \(\dfrac{27^2}{\left(-18\right)^3}=\dfrac{-3^6}{\left(3^2\cdot2\right)^3}=\dfrac{-3^6}{3^6\cdot2^3}=\dfrac{-1}{8}\)
12: \(\dfrac{\left(-10\right)^8}{8^3\cdot25^4}=\dfrac{2^8\cdot5^8}{2^6\cdot5^8}=2^2=4\)
13: \(\dfrac{4^4\cdot8^3}{16^4}=\dfrac{2^8\cdot2^9}{2^{16}}=2\)
14: \(\dfrac{5^7\cdot9^2}{15^5}=\dfrac{5^7\cdot3^4}{5^5\cdot3^5}=\dfrac{5^2}{3}=\dfrac{25}{3}\)
15: \(\dfrac{21^{13}}{49^6\cdot\left(-27\right)^4}=\dfrac{-7^{13}\cdot3^{13}}{7^{12}\cdot3^{12}}=-7\cdot3=-21\)
16: \(\dfrac{\left(-18\right)^{21}\cdot27^4}{81^{13}\cdot16^5}=\dfrac{-3^{42}\cdot2^{21}\cdot3^{12}}{3^{52}\cdot2^{20}}=\dfrac{-3^{54}}{3^{52}}\cdot2=-3^2\cdot2=-18\)
17: \(\dfrac{45^{14}\cdot8^2}{6^5\cdot125^4\cdot81^6}=\dfrac{3^{28}\cdot5^{14}\cdot2^6}{2^5\cdot3^5\cdot3^{24}\cdot5^{12}}=\dfrac{3^{28}}{3^{29}}\cdot\dfrac{5^{14}}{5^{12}}\cdot\dfrac{2^6}{2^5}=\dfrac{5^2\cdot2}{3}=\dfrac{50}{3}\)
18: \(\dfrac{11\cdot3^{22}\cdot3^7-9^{15}}{\left(2\cdot3^{14}\right)^2}=\dfrac{11\cdot3^{29}-3^{30}}{2^2\cdot3^{28}}=\dfrac{3^{29}\left(11-3\right)}{3^{28}\cdot2^2}=3\cdot\dfrac{8}{4}=3\cdot2=6\)
19: \(\dfrac{8^5\cdot\left(-5\right)^8+\left(-2\right)^5\cdot10^9}{16^4\cdot5^7+20^8}\)
\(=\dfrac{2^{15}\cdot5^8-2^{14}\cdot5^9}{2^{16}\cdot5^7+2^{16}\cdot5^8}=\dfrac{2^{14}\cdot5^8\cdot\left(2-5\right)}{2^{16}\cdot5^7\cdot\left(1+5\right)}=\dfrac{1}{4}\cdot5\cdot\dfrac{-3}{6}=\dfrac{5}{4}\cdot\dfrac{-1}{2}=-\dfrac{5}{8}\)
1) \(\dfrac{8^{10}}{4^8}=\dfrac{\left(2^3\right)^{10}}{\left(2^2\right)^8}=\dfrac{2^{30}}{2^{16}}=2^{30-16}=3^{14}\)
2) \(\dfrac{4^2\cdot4^3}{2^{10}}=\dfrac{4^{2+3}}{\left(2^2\right)^5}=\dfrac{4^5}{4^5}=1\)
3) \(\dfrac{8^2\cdot4^5}{2^{20}}=\dfrac{\left(2^3\right)^2\cdot\left(2^2\right)^5}{2^{20}}=\dfrac{2^6\cdot2^{10}}{2^{20}}=\dfrac{2^{16}}{2^{20}}=\dfrac{1}{2^4}=\dfrac{1}{16}\)
4) \(\dfrac{2^7\cdot9^3}{6^5\cdot8^2}=\dfrac{2^7\cdot\left(3^2\right)^3}{2^5\cdot3^5\cdot\left(2^3\right)^2}=\dfrac{2^7\cdot3^6}{2^5\cdot3^5\cdot2^6}=\dfrac{2^7\cdot3}{2^{11}}=\dfrac{3}{2^4}=\dfrac{3}{16}\)
5) \(\dfrac{2^{15}\cdot9^4}{6^6\cdot8^3}=\dfrac{2^{15}\cdot\left(3^2\right)^4}{3^6\cdot2^6\cdot\left(2^3\right)^3}=\dfrac{2^{15}\cdot3^8}{3^6\cdot2^6\cdot2^9}=\dfrac{2^{15}\cdot3^2}{2^{15}}=3^2=9\)
6) \(\dfrac{2^7\cdot9^3}{6^3\cdot8^2}=\dfrac{2^7\cdot\left(3^2\right)^3}{2^3\cdot3^3\cdot\left(2^3\right)^2}=\dfrac{2^7\cdot3^6}{2^3\cdot3^3\cdot2^6}=\dfrac{2^7\cdot3^3}{2^9}=\dfrac{3^3}{2^2}=\dfrac{27}{4}\)
\(1,\left(1\right)\cdot x=1\)
\(\Rightarrow x=\dfrac{1}{1,\left(1\right)}\)
\(\Rightarrow x=1:\dfrac{10}{9}\)
\(\Rightarrow x=\dfrac{9}{10}=0,9\)
Vậy số thập phân x thỏa mãn là 0,9
\(1,\left(1\right).x=1\)
\(\left(1+\dfrac{1}{9}\right).x=1\)
\(\dfrac{10}{9}.x=1\)
\(x=1:\dfrac{10}{9}\)
\(x=\dfrac{9}{10}\)
\(x=0,9\)
\(\dfrac{1}{99}-\dfrac{1}{97.99}-\dfrac{1}{95.97}-\dfrac{1}{93.95}-...-\dfrac{1}{3.5}-\dfrac{1}{1.3}\\ =\dfrac{1}{99}-\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{93.95}+\dfrac{1}{95.97}+\dfrac{1}{97.99}\right)\\ \)
\(=\dfrac{1}{99}-\dfrac{1}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{93.95}+\dfrac{2}{95.97}+\dfrac{2}{97.99}\right)\\ =\dfrac{1}{99}-\dfrac{1}{2}\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{93}-\dfrac{1}{95}+\dfrac{1}{95}-\dfrac{1}{97}+\dfrac{1}{97}-\dfrac{1}{99}\right)\\ \)
\(=\dfrac{1}{99}-\dfrac{1}{2}\left(1-\dfrac{1}{99}\right)\\ =\dfrac{1}{99}-\dfrac{1}{2}+\dfrac{1}{198}=-\dfrac{16}{33}\)
Đăng Tùng em làn đúng rồi đó