K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2021

\(ĐKXĐ:x\le\sqrt{5}-1\)

\(y^2=2+\sqrt{4-x^2-2x}\)

\(y^2=2+\sqrt{-\left(x^2+2x-4\right)}\)

\(y^2=2+\sqrt{5-\left(x^2+2x+1\right)}\)

\(y^2=2+\sqrt{5-\left(x+1\right)^2}\)

dễ thấy \(0\le\left(x+1\right)^2\le5\)và \(x,y\in Z\)

\(< =>\orbr{\begin{cases}\left(x+1\right)^2=1\\\left(x+1\right)^2=4\end{cases}}\)

nếu \(\left(x+1\right)^2=1\)

\(\orbr{\begin{cases}x+1=1\\x+1=-1\end{cases}\orbr{\begin{cases}x=0\left(TM\right)\\x=-2\left(TM\right)\end{cases}}}\)

nếu \(\left(x+1\right)^2=4\)

\(\orbr{\begin{cases}x+1=2\\x+1=-2\end{cases}\orbr{\begin{cases}x=1\left(TM\right)\\x=-3\left(TM\right)\end{cases}}}\)

nếu x=0

 \(y^2=2+\sqrt{4-0^2-2.0}\)

\(y^2=2+\sqrt{4}\)

\(y=\sqrt{2+2}=2\left(TM\right)\)

nếu x=-2

\(y^2=2+\sqrt{4-\left(-2\right)^2-2\left(-2\right)}\)

\(y^2=2+\sqrt{4-4+4}=2+\sqrt{4}\)

\(y=2\left(TM\right)\)

nếu x=1

\(y^2=2+\sqrt{4-1^2-2.1}=2+1=3\)

\(y=\sqrt{3}\left(KTM\right)\)

nếu x=-3

\(y^2=2+\sqrt{4-\left(-3\right)^2-2\left(-3\right)}=2+\sqrt{1}=3\)

\(y=\sqrt{3}\left(KTM\right)\)

vậy pt có nghiệm \(\orbr{\begin{cases}x=0\\x=-2\end{cases}};y=2\)

VC
10 tháng 8 2021

A B C M N E F

Hình vẽ k đc đúng lắm, bạn thông cảm !

Vì M ; N lần lượt là trung điểm của AB ; AC nên MN là đường trung bình của tam giác ABC

=> \(MN=\frac{1}{2}BC=\frac{1}{2}52=26\left(cm\right)\). Và \(MN//BC\)

Vì E ; F lần lượt là đường trung bình của MB và NC nên EF là đường trung bình của hình thang BMNC

\(\Rightarrow EF=\frac{MN+BC}{2}=\frac{26+52}{2}=\frac{78}{2}=39\left(cm\right)\)

\(B=[-4\left(a+b\right)^3-\left(2a+2b\right)^5]:\left(-3a-3b\right)^2\)

\(=-4\left(a+b\right)^3:[-3\left(a+b\right)]^2-\left(2a+2b\right)^5:[-3\left(a+b\right)]^2\)

\(=-4\left(a+b\right)^3:9\left(a+b\right)^2-32\left(a+b\right)^5:9\left(a+b\right)^2\)

\(=\frac{-4}{9}\left(a+b\right)-\frac{32}{9}\left(a+b\right)^3\)

\(1,\)

\(\left(x^2-x\right)^2+4\left(x^2+x\right)-12\)

\(=x^4-2x^3+x^2+4x^2+4x-12\)

\(=x^4-2x^3+5x^2+4x-12\)

10 tháng 8 2021

help meeeeeeeeeeeee

10 tháng 8 2021

( 2x - 6 ) ( x - 5 ) = ( 2x - 6 ) ( 2x - 4 )

<=> ( 2x - 6 ) ( x - 5 ) - ( 2x - 6 ) ( 2x - 4 ) = 0

<=> ( 2x - 6 ) ( x - 5 - 2x + 4 ) = 0

<=> ( 2x - 6 ) ( - x - - ) = 0

<=> \(\orbr{\begin{cases}2x-6=0\\-x-1=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)

( 2x - 6) . ( x - 5) = ( 2x - 6) . ( 2x-4 )

x = 3 

x = -1 

chúc bạn học tốt 

đặt biến phụ dạng đa thức 

x^2+x-16

x=-căn bậc hai(65)/2-1/2, x=căn bậc hai(65)/2-1/2

10 tháng 8 2021

\(x^3+y^3+z^3+x+y+z\ge2\sqrt{x^3.x}+2\sqrt{y^3.y}+2\sqrt{z^3.z}\)(BĐT Cô si)

\(VT\ge2\sqrt{x^4}+2\sqrt{y^4}+2\sqrt{z^4}\)

\(VT\ge2x^2+2y^2+2z^2=2\left(x^2+y^2+z^2\right)=6\)

dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x^2+y^2+z^2=3\\x^3=x;y^3=y;z^3=z\end{cases}< =>x=y=z=1}\)

\(x^3+y^3+z^3+x+y+z\ge6< =>ĐPCM\)

10 tháng 8 2021

còn cách khác nè :p

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có : 

\(x^3+y^3+z^3=\frac{x^4}{x}+\frac{y^4}{y}+\frac{z^4}{z}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x+y+z}=\frac{9}{x+y+z}\)

\(\Rightarrow x^3+y^3+z^3+x+y+z\ge\frac{9}{x+y+z}+\left(x+y+z\right)\ge2\sqrt{\frac{9}{x+y+z}\cdot\left(x+y+z\right)}=6\)( AM-GM )

=> đpcm . Dấu "=" xảy ra <=> x = y = z = 1