cho a^m=a^n (a thuộc Q;m,n thuộc N).Tìm các số m và n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a=2^{100}=\left(2^4\right)^{25}=16^{25}\)
\(b=3^{75}=\left(3^3\right)^{25}=27^{25}\)
\(c=5^{50}=\left(5^2\right)^{25}=25^{25}\)
Vì \(16^{25}< 25^{25}< 27^{25}\)
\(\Rightarrow a< c< b\)
\(a=2^{100},b=3^{75},c=5^{50}\\ \Rightarrow a=30^{85},b=30^{65},c=30^{44}\\ \Rightarrow a>b>c\)
\(32^9=\left(2^5\right)^9=2^{45}=8^{13}.2^6\)
\(18^{13}=9^{13}.2^{13}\)
\(9^{13}>8^{13};2^6< 2^{13}\)
\(\Rightarrow32^9< 18^{13}\Rightarrow\left(-32\right)^9>\left(-18\right)^{13}\)
Mình cảm thấy đề bài hơi sai sai bạn có thể xem lại được không ạ
a) Vì \(\widehat{OAT}\) và \(\widehat{XAT}\) là 2 góc kề bù nên :
\(\widehat{OAT}+\widehat{XAT}=180^o\)
\(80^o+\widehat{XAT}=180^o\)
\(\Rightarrow\widehat{XAT}=180^o-80^o=100^o\)
Vậy \(\widehat{XAT}\) \(=100^o\)
Vì tia At là tia phân giác của \(\widehat{XAT}\) nên :
\(\Rightarrow\widehat{XAT}=\widehat{7At'}=\dfrac{\widehat{xAt}}{2}=\dfrac{100^0}{2}=50^o\)
Vì \(\widehat{XAT}\) và \(\widehat{XOY}\) là 2 góc đồng vị nên \(\widehat{XAT}\)\(=\widehat{XOY}=50^o\)
\(\Rightarrow At'//Oy\)
b) Do \(\widehat{BOA}\) và \(\widehat{NBO}\) là 2 góc so le trong mà \(\widehat{BOA}=\widehat{NBO}=50^o\)
\(\Rightarrow Bn//Ox\)
\(...A=\left(-\dfrac{1}{2}\right).\left(-\dfrac{2}{3}\right).\left(-\dfrac{3}{4}\right)....\left(-\dfrac{1998}{1999}\right).\)
Số dấu trừ là : \(\left(1998-1\right):1+1=1998\) là số chẵn
\(\Rightarrow A=\dfrac{1.2.3...1998}{2.3.4...1999}\)
\(\Rightarrow A=\dfrac{1}{1999}\)
gợi ý nè
tính hết mấy cái hiệu trong ngoặc rồi nhân lại
vì kết thúc ở số 1999
nên sẽ có 1999 dấu -
nên kq là âm
nhân ra rồi triệt tiêu đi
Sửa đề: Tìm x, y thuộc Z biết x2 + 2x + y = xy
Bài làm:
\(x^2+2x+y=xy\)
\(x^2+2x=xy-y\)
\(x\left(x+2\right)=y\left(x-1\right)\)
\(\dfrac{x}{y}=\dfrac{x-1}{x+2}\)
Đặt xk = x - 1; yk = x + 2; k ≠ 0. Nếu k = 1 thì x = x - 1 hay 0 = -1, vô lí.
Suy ra
xk - x = -1
x(k - 1) = -1
\(x=-\dfrac{1}{k-1}\)
\(yk=2-\dfrac{1}{k-1}\)
\(y=\dfrac{2-\dfrac{1}{k-1}}{k}\)
(từ đoạn này thì phải tìm k để x và y nguyên nhưng chưa xử lí được)
\(a^m=a^n\)
\(\Rightarrow m=n\)
Với \(a^m=a^n\) mọi \(m=n\)
Vậy: \(m=n\in\left\{1;2;3;4;...\right\}\)
m = n vô số nha