Chứng minh tồn tại giới hạn $\lim\limits_{x \rightarrow 2}f(x)$ biết
$f(x) = \left\{\begin{aligned} &x^2 - 3 \ \text{khi} \ x \ge 2\\ &x - 1 \ \text{khi} \ x < 2 \end{aligned}\right.$
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}lim_{x\rightarrow3^+}\frac{\left|x-3\right|}{x-3}=lim_{x\rightarrow3^+}\frac{x-3}{x-3}=1\\lim_{x\rightarrow3^-}\frac{\left|x-3\right|}{x-3}=lim_{x\rightarrow3^-}\frac{-x+3}{x-3}=-1\end{cases}\Rightarrow lim_{x\rightarrow3^+}\frac{\left|x-3\right|}{x-3}\ne lim_{x\rightarrow3^-}\frac{\left|x-3\right|}{x-3}}\)
=> đpcm
Đặt f(x)=cosx.
Chọn hai dãy số {xn} và {yn} với :
* xn=2nπ⇒xn→+∞ khi n→+∞ và ta được :
f(xn)=cos(xn)=cos(2nπ)=n→+∞1 .
* yn=π2+nπ⇒yn→+∞ khi n→+∞ và ta được :
f(yn)=cos(yn)=cos(π2+nπ)=n→+∞0.
Vậy limx→∞cosx không tồn tại.
Hai câu kia của mình bị lỗi ,không biết câu này có bị không
Đặt f(x)=cosx.
Chọn hai dãy số {xn} và {yn} với :
* xn=2nπ⇒xn→+∞ khi n→+∞ và ta được :
f(xn)=cos(xn)=cos(2nπ)=n→+∞1 .
* yn=π2+nπ⇒yn→+∞ khi n→+∞ và ta được :
f(yn)=cos(yn)=cos(π2+nπ)=n→+∞0.
Vậy limx→∞cosx không tồn tại.
Hai câu kia mình bị lỗi nha.
Với mọi dãy (xn):xn>1
\(\forall\)n và \(limx_n=1\)ta có \(lim_{x\rightarrow1^+}\frac{4x-3}{x-1}=lim\frac{4x_n-3}{x_n-1}=+\infty\)
Gọi M, N lần lượt là trung điểm các cạnh AB và CD.
Ta có tam giác ANB cân tại N,
-> MN vuông góc AB.
Tam giác ADB = Tam giác ACB, ta có:
MD=MC -> Tam giác MDC cân tại M.
-> MN vuông góc CD
Do đó ta suy ra MN là đoạn vuông góc chung của cạnh AB và CD.
Ta có khoảng cách từ cạnh AB đến CD là MN:
MN= căn bậc a (AN^2-AM^2)= √2/2
Đáp số: khoảng cách giữa cạnh AB và CD là √2/2
Gọi M và N lần lượt là trung điểm của AB và CD. Khi đó:
\(\Delta ACD\)và \(\Delta BCD\)là 2 tam giác đều cạnh 3 nên AN=BN=\(\frac{3\sqrt{3}}{2}\)
Đồng thời \(\Delta ABC=\Delta ABD\)nên CM=DM
Do đó MAB và NCD là 2 tam giác cân tại M và N
Vậy MN _|_ BA và MN _|_ CD
Ta có MN=\(\sqrt{NB^2-MB^2}=\sqrt{\frac{27}{4}-\frac{25}{4}}=\frac{\sqrt{2}}{2}\)
Dựng CH _|_ AB => CH _|_ (SAB)
Giả sử MN cắt AD tại F. Theo định lý Talet ta có:
\(\frac{DF}{MC}=\frac{ND}{NC}=\frac{1}{2}\Rightarrow DF=\frac{MC}{2}=\frac{a}{4}\)
Khi đó \(\frac{PA}{PC}=\frac{AF}{MC}=\frac{5}{2}\Rightarrow\frac{CA}{PA}=\frac{7}{5}\)
Do đó: d (P;(SAB))=\(\frac{5}{7}d\left(C;\left(SAB\right)\right)=\frac{5}{7}CH=\frac{5}{7}\cdot\frac{a\sqrt{3}}{2}=\frac{5a\sqrt{3}}{14}\)
em gửi bài