cho a+b+c>0, a2+b2+c2=1
tìm GTNN của x+y+z
giúp mình nha, cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
D = S35 + S60 +S100 với Sn = 1 - 2 + 3 - 4 + .... + ( -1 ) n -1 .n ( n\(\in\)N* )
Giúp mk nhanh nhé !
Với \(n\)lẻ: \(n=2k-1\)
\(S_n=1-2+3-...+\left(-1\right)^{n-1}n=1+\left(3-2\right)+...+\left[\left(-1\right)^{n-1}n-\left(-1\right)^{n-2}\left(n-1\right)\right]\)
\(=1+1+...+1=k\)
Với \(n\)chẵn: \(n=2k\)
\(S_n=1-2+3-...+\left(-1\right)^{n-1}n=\left(1-2\right)+\left(3-4\right)+...+\left[\left(-1\right)^{n-1}n-\left(-1\right)^{n-2}\left(n-1\right)\right]\)
\(=-1-1-...-1=-k\)
Áp dụng:
\(D=S_{35}+S_{60}+S_{100}=18-30-50=-62\)
Ta có:
(sinC) ^ 2 + (cosC) ^ 2 = (AB / BC) ^ 2 + (AC / BC) ^ 2
=(AB ^ 2 + AC ^ 2) / BC ^ 2 = BC ^ 2 / BC ^ 2 = 1
(Vì ABC vuông tại A mà, nên theo pitago)
-->(cosC) ^ 2 = 1 - (sinC) ^ 2 = 1 - 0,8 ^ 2 = 0,36
--> cosC = 0,6 hoặc cosC = - 0,6 (loại vì C là 1 góc nhọn)
Vậy cosC = 0,6
tanC = 0,8 / 0,6 = 4 / 3, cotC = 0,6 / 0,8 = 0,75
B A C a
a, Ta có : tan a = CB/AB
sin a / cos a = CB/AC / BA/AC = CB/AB
=> ĐPCM
Tương tự với cái kia nhaaaaaa
Do tan a = CB/AB (1)
Mà cot a = AB/CD (2)
Nhân theo vế (1) và (2) ta có ngay đpcm
b, Ta có : \(VT=\frac{AB^2}{AC^2}+\frac{BC^2}{AC^2}=\frac{AB^2+BC^2}{AC^2}=1\)(pitago)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{abc}=1\)
\(\Leftrightarrow ab+bc+ca+1=abc\)
Nếu \(a,b,c\)đều là số lẻ thì \(VT\)là số chẵn, \(VP\)là số lẻ (mâu thuẫn)
Do đó có một trong ba số là số chẵn.
Giả sử \(c=2\): xét \(a\ge b>2\)
\(ab+2a+2b+1=2ab\)
\(\Leftrightarrow ab-2a-2b-1=0\)
\(\Leftrightarrow\left(a-2\right)\left(b-2\right)=5=1.5\)
\(\Rightarrow\hept{\begin{cases}a-2=5\\b-2=1\end{cases}}\Leftrightarrow\hept{\begin{cases}a=7\\b=3\end{cases}}\)
Vậy \(\left(a,b,c\right)=\left(7,3,2\right)\)và các hoán vị.
a)
\(B=\frac{x+3}{x-9}+\frac{2}{\sqrt{x}-3}-\frac{1}{3-\sqrt{x}}\)
\(\Leftrightarrow\frac{x+3}{x-9}+\frac{2\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\frac{\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(\Leftrightarrow\frac{x+3+2\sqrt{x}+6+\sqrt{x}+3}{x-9}\)
\(\Leftrightarrow\frac{3\sqrt{x}+x+14}{x-9}\)
ĐK : x >= 0 ; x khác 4
\(=\left[\frac{2\left(\sqrt{x}-2\right)}{x-4}-\frac{\sqrt{x}-5}{x-4}\right]\cdot\frac{\sqrt{x}-2}{\sqrt{x}+1}\)( chắc là -5 )
\(=\frac{2\sqrt{x}-4-\sqrt{x}+5}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\frac{\sqrt{x}-2}{\sqrt{x}+1}=\frac{1}{\sqrt{x}+2}\)
\(4x^4+625=\left(2x^2\right)^2+\left(5^2\right)^2=\left(2x^2\right)^2+2.2x^2.5^2+\left(5^2\right)^2-2.2x^2.5^2\)
\(=\left(2x^2+25\right)^2-100x^2=\left(2x^2+25-10x\right)\left(2x^2+25+10x\right)\)
\(4x^4+625\)
\(=4x^4+20x^3-20x^3+50x^2+50x^2-100x^2-250x+250x+625\)
\(=\left(4x^4+20x^3+50x^2\right)-\left(20x^3-100x^2-250x\right)+\left(50x^2+250x+625\right)\)
\(=2x^2\left(2x^2+10x+25\right)-10x\left(2x^2+10x+25\right)+25\left(2x^2+10x+25\right)\)
\(=\left(2x^2+10x+25\right)\left(2x^2-10x+25\right)\)
nhầm nha các bạn phải là a+b+c nha
bài này tìm max thì phải đó bạn