K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: D đối xứng H qua AB

=>AH=AD;BH=BD

E đối xứng H qua AC

=>AH=AE; CH=CE

Xét ΔAHB và ΔADB có

AH=AD

HB=DB

AB chung

Do đó: ΔAHB=ΔADB

=>\(\widehat{AHB}=\widehat{ADB}=90^0\)

ΔAHB=ΔADB

=>\(\widehat{HAB}=\widehat{DAB}\)

=>AB là phân giác của góc HAD

Xét ΔAHC và ΔAEC có

AH=AE

CH=CE

AC chung

Do đó: ΔAHC=ΔAEC

=>\(\widehat{AHC}=\widehat{AEC}=90^0\)

ΔAHC=ΔAEC

=>\(\widehat{HAC}=\widehat{EAC}\)

=>AC là phân giác của góc HAE

\(\widehat{DAE}=\widehat{DAH}+\widehat{EAH}=2\left(\widehat{BAH}+\widehat{CAH}\right)=2\cdot90^0=180^0\)

=>D,A,E thẳng hàng

=>BD//CE

Xét tứ giác BDEC có BD//EC

nên BDEC là hình thang

b: Ta có: AD=AH

AH=AE

Do đó: AD=AE

=>A là trung điểm của DE

Xét ΔABC vuông tại A có AH là đường cao

nên \(HB\cdot HC=HA^2\)

=>\(BD\cdot CE=\left(\dfrac{1}{2}DE\right)^2=\left(\dfrac{DE}{2}\right)^2\)

c: Xét ΔABC vuông tại A có AH là đường cao

nên \(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

=>\(\dfrac{1}{AH^2}=\dfrac{1}{3^2}+\dfrac{1}{4^2}=\dfrac{25}{144}\)

=>\(AH=\sqrt{\dfrac{144}{25}}=\dfrac{12}{5}=2,4\left(cm\right)\)

=>DE=2AH=4,8(cm)

29 tháng 7

ok bẠN

29 tháng 7

rồi bn trả lời đi

a: Xét ΔABC có D,E lần lượt là trung điểm của AC,AB

=>DE là đường trung bình của ΔABC

=>DE//BC và \(DE=\dfrac{BC}{2}=2\left(cm\right)\)

Xét hình thang BEDC có

M,N lần lượt là trung điểm của EB,DC

=>MN là đường trung bình của hình thang BEDC

=>MN//ED//BC và \(MN=\dfrac{ED+BC}{2}=\dfrac{2+4}{2}=3\left(cm\right)\)

b: Xét ΔBED có MP//ED
nên \(\dfrac{MP}{ED}=\dfrac{BM}{BE}=\dfrac{1}{2}\)

=>\(MP=\dfrac{1}{2}ED=\dfrac{1}{2}\cdot\dfrac{1}{2}\cdot BC=\dfrac{1}{4}BC\)

Xét ΔCED có NQ//ED
nên \(\dfrac{NQ}{ED}=\dfrac{CN}{CD}=\dfrac{1}{2}\)

=>\(NQ=\dfrac{1}{2}ED=\dfrac{1}{2}\cdot\dfrac{1}{2}\cdot BC=\dfrac{1}{4}BC\)

\(MN=\dfrac{1}{2}\left(ED+BC\right)=\dfrac{1}{2}\left(\dfrac{1}{2}BC+BC\right)=\dfrac{1}{2}\cdot\dfrac{3}{2}BC=\dfrac{3}{4}BC\)

=>\(MP+PQ+QN=\dfrac{3}{4}BC\)

=>\(PQ=\dfrac{3}{4}BC-\dfrac{1}{4}BC-\dfrac{1}{4}BC=\dfrac{1}{4}BC\)

Do đó:MP=PQ=QN

a: Ta có: \(\widehat{ICA}+\widehat{ICB}=\widehat{ACB}=90^0\)

\(\widehat{ICB}+\widehat{NCB}=\widehat{NCI}=90^0\)

Do đó: \(\widehat{ICA}=\widehat{NCB}\)

Ta có: \(\widehat{CAI}+\widehat{CBI}=90^0\)(ΔCBA vuông tại C)

\(\widehat{CBI}+\widehat{CBN}=\widehat{NBI}=90^0\)

Do đó: \(\widehat{CAI}=\widehat{CBN}\)

Xét ΔCAI và ΔCBN có

\(\widehat{CAI}=\widehat{CBN}\)

\(\widehat{ICA}=\widehat{NCB}\)

Do đó: ΔCAI~ΔCBN

b: Ta có: \(\widehat{ACM}+\widehat{ACI}=\widehat{ICM}=90^0\)

\(\widehat{ICA}+\widehat{ICB}=\widehat{ACB}=90^0\)

Do đó: \(\widehat{ACM}=\widehat{ICB}\)

Ta có: \(\widehat{CAM}+\widehat{CAB}=\widehat{BAM}=90^0\)

\(\widehat{CAB}+\widehat{CBA}=90^0\)(ΔCAB vuông tại C)

Do đó: \(\widehat{CAM}=\widehat{CBA}\)

Xét ΔCAM và ΔCBI có

\(\widehat{CAM}=\widehat{CBI}\)

\(\widehat{ACM}=\widehat{BCI}\)

Do đó: ΔCAM~ΔCBI

=>\(\dfrac{AC}{CB}=\dfrac{AM}{BI}\)

=>\(AC\cdot BI=MA\cdot BC\)

c: Xét tứ giác CIBN có \(\widehat{ICN}+\widehat{IBN}=90^0+90^0=180^0\)

nên CIBN là tứ giác nội tiếp

=>\(\widehat{CIN}=\widehat{CBN}\)

=>\(\widehat{CIN}=\widehat{BAC}\)

0

Ta có:\(3\left(a^2+b^2+c^2\right)=\left(a+b+c\right)^2\)

\(\Leftrightarrow3a^2+3b^2+3c^2=a^2+b^2+c^2+2ab+2bc+2ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Vì \(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(c-a\right)^2\ge0\) với mọi \(a;b;c\inℝ\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) với mọi \(a;b;c\inℝ\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\)

\(\Rightarrow a=b=c\)

\(\Rightarrow P=a^3+a^3+c^3-3.a.a.a\)

\(\Leftrightarrow P=3a^3-3a^3\)

\(\Leftrightarrow P=0\)

Vậy ...

 

26 tháng 7

`556^2 - 553 . 559 `

`= 556^2 - (556 - 3) . (556 + 3) `

`= 556^2 - (556^2 - 3^2)`

`= 556^2 - 556^2 + 9`

`= 0 + 9`

= 9

`456^2 + 456 . 88 + 44^2`

`= 456^2 + 456 . 88 + 44^2`

`= 456^2 + 2 .456 . 4 + 44^2`

`= (456 + 44)^2`

`= 500^2`

`= 250000`

--------------------------------

Áp dụng các HDT sau nhé: 

`(a+b)^2 = a^2 + 2ab + b^2`

`a^2 - b^2 = (a+b)(a-b)`