K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5

Ta có:  \(\dfrac{a}{12}=\dfrac{1}{3}\\ \Rightarrow a=\dfrac{12}{3}=4\)

Vậy \(a=4\).

28 tháng 5

Ta có:  𝑎12=13⇒𝑎=123=4

Vậy 𝑎=4.

 

\(\left(\dfrac{1}{9}\right)^5=\left[\left(\dfrac{1}{3}\right)^2\right]^5=\left(\dfrac{1}{3}\right)^{10}\)

\(\left(\dfrac{1}{27}\right)^7=\left[\left(\dfrac{1}{3}\right)^3\right]^7=\left(\dfrac{1}{3}\right)^{21}\)

AH
Akai Haruma
Giáo viên
31 tháng 5

** Bổ sung điều kiện $a,b,c>0$.

Áp dụng BĐT Cô-si cho các số dương:

$(a+b)(b+2c)(c+4a)=(a+\frac{b}{2}+\frac{b}{2})(b+c+c)(c+2a+2a)$
$\geq 3\sqrt[3]{a.\frac{b}{2}.\frac{b}{2}}.3\sqrt[3]{bc^2}.3\sqrt[3]{c.2a.2a}=27abc$
Ta có đpcm

Dấu "=" xảy ra khi $b=c=2a$

a: Xét ΔABD vuông tại A và ΔHBD vuông tại H có

BD chung

\(\widehat{ABD}=\widehat{HBD}\)

Do đó: ΔBAD=ΔBHD

b: Xét ΔCAB vuông tại A và ΔCAE vuông tại A có

CA chung

AB=AE

Do đó: ΔCAB=ΔCAE

=>\(\widehat{ACB}=\widehat{ACE}\)

=>CA là phân giác của góc ECB

 

26 tháng 5

loading...  

a) Do ∆ABC cân tại A (gt)

⇒ AB = AC

Xét hai tam giác vuông: ∆AHB và ∆AHC có:

AH là cạnh chung

AB = AC (cmt)

⇒ ∆AHB = ∆AHC (cạnh huyền - cạnh góc vuông)

b) Do BN là đường trung tuyến của ∆ABC (gt)

⇒ N là trung điểm của AC

⇒ AN = CN

Do AH // CK (gt)

⇒ ∠IAN = ∠KCN (so le trong)

Xét ∆AIN và ∆CKN có:

∠ANI = ∠CNK (đối đỉnh)

AN = CN (cmt)

∠IAN = ∠KCN (cmt)

⇒ ∆AIN = ∆CKN (g-c-g)

⇒ NI = NK (hai cạnh tương ứng)

c) Xem lại đề. Em viết sai tùm lum

24 tháng 5

Ta thấy: \(\left\{{}\begin{matrix}\left(3x-2\right)^{2022}\ge0;\forall x\\\left(5y+4\right)^{2024}\ge0;\forall y\end{matrix}\right.\)

\(\Rightarrow\left(3x-2\right)^{2022}+\left(5y+4\right)^{2024}\ge0;\forall x,y\)

\(\Rightarrow\left(3x-2\right)^{2022}+\left(5y+4\right)^{2024}+2023\ge2023;\forall x,y\)

\(\Rightarrow C\ge2023;\forall x,y\)

Dấu \("="\) xảy ra khi: \(\left\{{}\begin{matrix}3x-2=0\\5y+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=-\dfrac{4}{5}\end{matrix}\right.\)

Vậy \(C_{min}=2023\) tại \(x=\dfrac{2}{3};y=-\dfrac{4}{5}\).

24 tháng 5

Sửa đề: \(\left(4x^4+14x^3-21x-9\right):\left(2x^2-3\right)\)

\(=\left(4x^4+14x^3+6x^2-6x^2-21x-9\right):\left(2x^2-3\right)\)

\(=\left[\left(4x^4-6x^2\right)+\left(14x^3-21x\right)+\left(6x^2-9\right)\right]:\left(2x^2-3\right)\)

\(=\left[2x^2.\left(2x^2-3\right)+7x.\left(2x^2-3\right)+3.\left(2x^2-3\right)\right]:\left(2x^2-3\right)\)

\(=\left(2x^2+7x+3\right).\left(2x^2-3\right):\left(2x^2-3\right)\)

\(=2x^2+7x+3\)

___________________

\(\left(6x^3-2x^2-9x+3\right):\left(3x-1\right)\)

\(=\left[\left(6x^3-2x^2\right)-\left(9x-3\right)\right]:\left(3x-1\right)\)

\(=\left[2x^2.\left(3x-1\right)-3.\left(3x-1\right)\right]:\left(3x-1\right)\)

\(=\left(2x^2-3\right).\left(3x-1\right):\left(3x-1\right)\)

\(=2x^2-3\)

`#NqHahh`

AH
Akai Haruma
Giáo viên
23 tháng 5

Lời giải:

Với $n$ nguyên, để $\frac{3n+2}{4n-5}$ là số nguyên thì:

$3n+2\vdots 4n-5$

$\Rightarrow 4(3n+2)\vdots 4n-5$

$\Rightarrow 12n+8\vdots 4n-5$

$\Rightarrow 3(4n-5)+23\vdots 4n-5$

$\Rightarrow 23\vdots 4n-5$

Với $n$ nguyên $\Rightarrow 4n-5\in Ư(23)$
 $\Rightarrow 4n-5\in \left\{-1; -23; 1; 23\right\}$

$\Rightarrow n\in \left\{1; -4,5; 1,5; 7\right\}$

Vì $n$ nguyên nên $n\in\left\{1; 7\right\}$

Bài 4:

a: Dấu hiệu ở đây là số lỗi chính tả trong mỗi bài tiếng Anh của các bạn lớp 7A

b: Có 40 bạn làm bài kiểm tra

c: Bảng tần số:

Số lỗi123456789
Số bạn 668651323

Nhận xét:

-Đa số các bạn đều sai từ 1 đến 4 lỗi

-Số bạn sai 6 lỗi là ít nhất(1 bạn)

-Số bạn sai 3 lỗi là nhiều nhất(8 bạn)

d: Trung bình cộng là:

\(\overline{X}=\dfrac{1\cdot6+2\cdot6+3\cdot8+4\cdot6+5\cdot5+6\cdot1+7\cdot3+8\cdot2+9\cdot3}{40}\)

=>\(\overline{X}=\dfrac{161}{40}\)

Mốt của dấu hiệu là 3

Bài 9:

a: \(A=\left(\dfrac{1}{3}-\dfrac{8}{15}-\dfrac{1}{7}\right)+\left(\dfrac{2}{3}+\dfrac{-7}{15}+1\dfrac{1}{7}\right)\)

\(=\dfrac{1}{3}-\dfrac{8}{15}-\dfrac{1}{7}+\dfrac{2}{3}+\dfrac{-7}{15}+\dfrac{8}{7}\)

\(=\left(\dfrac{1}{3}+\dfrac{2}{3}\right)+\left(-\dfrac{8}{15}-\dfrac{7}{15}\right)+\left(-\dfrac{1}{7}+\dfrac{8}{7}\right)\)

\(=1-1+1=1\)

b: \(B=0,25+\dfrac{3}{5}-\left(\dfrac{1}{8}-\dfrac{2}{5}+1\dfrac{1}{4}\right)\)

\(=0,25+\dfrac{3}{5}-\dfrac{1}{8}+\dfrac{2}{5}-1,25\)

\(=\left(\dfrac{3}{5}+\dfrac{2}{5}\right)+\left(0,25-1,25\right)-\dfrac{1}{8}\)

\(=1-1-\dfrac{1}{8}=-\dfrac{1}{8}\)

c: \(C=\dfrac{3}{4}-\dfrac{4}{5}+\dfrac{5}{6}-\dfrac{6}{7}+\dfrac{7}{8}+\dfrac{6}{7}-\dfrac{5}{6}+\dfrac{4}{5}-\dfrac{3}{4}\)

\(=\left(\dfrac{3}{4}-\dfrac{3}{4}\right)+\left(-\dfrac{4}{5}+\dfrac{4}{5}\right)+\left(\dfrac{5}{6}-\dfrac{5}{6}\right)+\left(-\dfrac{6}{7}+\dfrac{6}{7}\right)+\dfrac{7}{8}\)

\(=0+0+0+0+\dfrac{7}{8}=\dfrac{7}{8}\)

d: \(D=\left(2025-\dfrac{5}{181}+\dfrac{1}{50}\right)-\left(4+\dfrac{3}{181}-\dfrac{2}{50}\right)-\left(1-\dfrac{8}{181}+\dfrac{3}{50}\right)\)

\(=2025-\dfrac{5}{181}+\dfrac{1}{50}-4-\dfrac{3}{181}+\dfrac{2}{50}-1+\dfrac{8}{181}-\dfrac{3}{50}\)

\(=2025-4-1=2020\)

23 tháng 5

giúp mình với mình đang cần gấp