Biến đổi bất đẳng thức sau
\(a^2+b^2+c^2-3abc=\)0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\sqrt{3x+1}+2x=\sqrt{x-4}-5\left(ĐKXĐ:x\ge4\right)\)
\(\Leftrightarrow\left(\sqrt{3x+1}-\sqrt{x-4}\right)+\left(2x+5\right)=0\)
\(\Leftrightarrow\frac{3x+1-x+4}{\sqrt{3x+1}+\sqrt{x-4}}+\left(2x+5\right)=0\)
\(\Leftrightarrow\frac{2x+5}{\sqrt{3x+1}+\sqrt{x-4}}+\left(2x+5\right)=0\)
\(\Leftrightarrow\left(2x+5\right)\left(\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1\right)=0\)
a') (tiếp)
\(\Leftrightarrow\orbr{\begin{cases}2x+5=0\\\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2,5\left(KTMĐKXĐ\right)\\\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1=0\end{cases}}\)
Xét phương trình \(\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1=0\)(1)
Với mọi \(x\ge4\), ta có:
\(\sqrt{3x+1}>0\); \(\sqrt{x-4}\ge0\)
\(\Rightarrow\sqrt{3x+1}+\sqrt{x-4}>0\Rightarrow\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}>0\)
\(\Rightarrow\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1>0\)
Do đó phương trình (1) vô nghiệm.
Vậy phương trình đã cho vô nghiệm.
a)\(\sqrt[3]{x-5}+\sqrt[3]{x+2}=3\left(ĐKXĐ:x\in R\right)\)
\(\Leftrightarrow\left(\sqrt[3]{x-5}-1\right)+\left(\sqrt[3]{x+2}-2\right)=0\)
\(\Leftrightarrow\frac{x-5-1}{\sqrt[3]{\left(x-5\right)^2}+\sqrt[3]{x-5}+1}+\frac{x+2-8}{\sqrt[3]{\left(x+2\right)^2}+2\sqrt[3]{x+2}+4}=0\)
\(\Leftrightarrow\frac{x-6}{\sqrt[3]{\left(x-5\right)^2}+\sqrt[3]{x-5}+1}+\frac{x-6}{\sqrt[3]{\left(x+2\right)^2}+2\sqrt[3]{x+2}+4}=0\)
\(\Leftrightarrow\left(x-6\right)\left[\frac{1}{\sqrt[3]{\left(x-5\right)^2}+\sqrt[3]{x-5}+1}+\frac{1}{\sqrt[3]{\left(x+2\right)^2}+2\sqrt[3]{x+2}+4}\right]=0\)
a') (tiếp)
\(\Leftrightarrow\orbr{\begin{cases}x-6=0\\\frac{1}{\sqrt[3]{\left(x-5\right)^2}+\sqrt[3]{x-5}+1}+\frac{1}{\sqrt[3]{\left(x+2\right)^2}+2\sqrt[3]{x+2}+4}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=6\left(TMĐKXĐ\right)\\\frac{1}{\sqrt[3]{\left(x-5\right)^2}+\sqrt[3]{x-5}+1}+\frac{1}{\sqrt[3]{\left(x+2\right)^2}+2\sqrt[3]{x+2}+4}=0\end{cases}}\)
Xét phương trình:
\(\frac{1}{\sqrt[3]{\left(x-5\right)^2}+\sqrt[3]{x-5}+1}+\frac{1}{\sqrt[3]{\left(x+2\right)^2}+2\sqrt[3]{x+2}+4}=0\left(1\right)\)
Ta có:
\(\sqrt[3]{\left(x-5\right)^2}+\sqrt[3]{x-5}+1=\left(\sqrt[3]{x-5}+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\in R\)
\(\Rightarrow\frac{1}{\sqrt[3]{\left(x-5\right)^2}+\sqrt[3]{x-5}+1}>0\forall x\in R\)
a) \(\frac{1}{x-1+\sqrt{x^2-2x+3}}+\frac{1}{x-1-\sqrt{x^2-2x+3}}=1\)
ĐKXĐ : \(x\inℝ\)
\(\Leftrightarrow\frac{x-1-\sqrt{x^2-2x+3}}{\left(x-1+\sqrt{x^2-2x+3}\right)\left(x-1-\sqrt{x^2-2x+3}\right)}+\frac{x-1+\sqrt{x^2-2x+3}}{\left(x-1+\sqrt{x^2-2x+3}\right)\left(x-1-\sqrt{x^2-2x+3}\right)}=\frac{\left(x-1+\sqrt{x^2-2x+3}\right)\left(x-1-\sqrt{x^2-2x+3}\right)}{\left(x-1+\sqrt{x^2-2x+3}\right)\left(x-1-\sqrt{x^2-2x+3}\right)}\)
\(\Rightarrow2x-2=\left[\left(x-1\right)+\left(\sqrt{x^2-2x+3}\right)\right]\left[\left(x-1\right)-\left(\sqrt{x^2-2x+3}\right)\right]\)
\(\Leftrightarrow2x-2=\left(x-1\right)^2-\left(\sqrt{x^2-2x+3}\right)^2\)
\(\Leftrightarrow2x-2=x^2-2x+1-\left(x^2-2x+3\right)\)
\(\Leftrightarrow2x-2=x^2-2x+1-x^2+2x-3\)
\(\Leftrightarrow2x-2=-2\)
\(\Leftrightarrow2x=0\)
\(\Leftrightarrow x=0\)
Vậy phương trình có nghiệm duy nhất x = 0
\(a,\sqrt{x-1-2\sqrt{x-2}}=1\)
\(\Leftrightarrow\sqrt{x-2-2\sqrt{x-2}+1}=1\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-2}-1\right)^2}=1\)
\(\Leftrightarrow\left(\sqrt{\left(\sqrt{x-2}-1\right)^2}\right)^2=1^2\)
\(\Leftrightarrow\left(\sqrt{x-2}-1\right)^2=1\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-2}-1=1\\\sqrt{x-2}-1=-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-2}=2\\\sqrt{x-2}=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{x-2}\right)^2=2^2\\\left(\sqrt{x-2}\right)=0^2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-2=4\\x-2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=6\\x=2\end{cases}}\)
a) \(\sqrt{x-1-2\sqrt{x-2}}\)=1
⇔\(\sqrt{x-2-2\sqrt{x-2}+1}\)=1
⇔\(\sqrt{\left(\sqrt{x-2}-1\right)^2}\)=1
⇔(\(\sqrt{\left(\sqrt{x-2}-1\right)^2}\))2=12
⇔(\(\sqrt{x-2}\)-1)2=1
⇔\(\left\{{}\begin{matrix}\sqrt{x-2}-1=1\\\sqrt{x-2}-1=-1\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}\sqrt{x-2}=2\\\sqrt{x-2}=0\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x-2=4\\x-2=0\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=6\\x=2\end{matrix}\right.\)
Vậy phương trình có 2 nghiệm là x=6; x=2
b) \(\sqrt{x+\sqrt{x+5}}\)+\(\sqrt{x-\sqrt{x+5}}\)=2\(\sqrt{2}\) ( đk: x≥-5)
⇔ x+\(\sqrt{x^2-x-5}\)=4
⇔\(\sqrt{x^2-x-5}\)=4-x
⇔(\(\sqrt{x^2-x-5}\))2= ( 4-x)2
⇔x2-x-5= 16-8x+x2
⇔x2-x+8x-x2=16+5
⇔ 7x=21
⇔x=3 ( thỏa mãn điều kiện xác định)
Lê Duy Khương vừa thiếu ĐKXĐ vừa sai ._.
a) \(1+\sqrt{x^2-2x+6}=2x\)
\(\Leftrightarrow\sqrt{x^2-2x+6}=2x-1\)
ĐKXĐ : \(x\ge\frac{1}{2}\)
Bình phương hai vế
<=> x2 - 2x + 6 = 4x2 - 4x + 1
<=> 4x2 - 4x + 1 - x2 + 2x - 6 = 0
<=> 3x2 - 2x - 5 = 0 (*)
Dễ thấy (*) có a - b + c = 0 nên có hai nghiệm phân biệt x1 = -1 (ktm) ; x2 = 5/3 (tm)
Vậy phương trình có nghiệm x = 5/3
b) \(\sqrt{x^2+7}-\sqrt{x^2-8}=2\)
\(\Leftrightarrow\sqrt{x^2+7}=2+\sqrt{x^2-8}\)
ĐKXĐ : \(\orbr{\begin{cases}x\ge2\sqrt{2}\\x\le-2\sqrt{2}\end{cases}}\)
Đặt t = x2 + 7
\(pt\Leftrightarrow\sqrt{t}=2+\sqrt{t-15}\)( t ≥ 15 )
Bình phương hai vế
<=> \(t=t-15+4\sqrt{t-15}+4\)
<=> \(4\sqrt{t-15}=11\)
<=> \(\sqrt{t-15}=\frac{11}{4}\)
<=> t - 15 = 121/16
<=> t = 361/16 (tm)
=> x2 + 7 = 361/16
<=> x2 = 249/16
<=> \(x=\frac{\pm\sqrt{249}}{4}\)
Vậy phương trình có nghiệm \(x=\frac{\pm\sqrt{249}}{4}\)
a)
\(1+\sqrt{x^2-2x+6}=2x\)
\(\Leftrightarrow\sqrt{x^2-2x+6}=2x-1\)
\(\Leftrightarrow x^2-2x+6=\left(2x-1\right)^2\)
\(\Leftrightarrow x^2-2x+6=4x^2-4x+1\)
\(\Leftrightarrow4x^2-2x-5=0\)
Ta có \(\Delta'=b'^2-ac=\left(-1\right)^2-4.\left(-5\right)=21>0\)
Vậy phương trình có hai nghiệm phân biệt
\(x_1=\frac{1+\sqrt{21}}{4}\) ; \(x_2=\frac{1-\sqrt{21}}{4}\)
b)
\(\sqrt{x^2+7}-\sqrt{x^2-8}=2\)
\(\sqrt{x^2+7}=2+\sqrt{x^2-8}\)
ĐKXĐ: \(x\ne\pm\sqrt{8}\)
Khi đó ta có
\(x^2+7=x^2-8+2.2.\sqrt{x^2-8}+4\)
\(\Leftrightarrow4\sqrt{x^2-8}=4-8-7=-11\)
\(\Leftrightarrow\sqrt{x^2-8}=-\frac{11}{4}\) ( vô lí )
Vậy phương trình vô nghiệm
a) \(\sqrt{14-x}\)+\(\sqrt{2-x}\)=6 ( đk: x<14 <; x<2)
⇔\(\sqrt{14-x}\)=6-\(\sqrt{2-x}\)
⇔(\(\sqrt{14-x}\))2= ( 6-\(\sqrt{2-x}\))2
⇔14-x= 36-12\(\sqrt{2-x}\)+2-x
⇔-x+x+12\(\sqrt{2-x}\)= -14+36+2
⇔12\(\sqrt{2-x}\)= 24
⇔\(\sqrt{2-x}\)=2
⇔(\(\sqrt{2-x}\))2= 4
⇔2-x=4
⇔-x=2
⇔x=-2 ( thỏa man điều kiện xác định)
Vậy x=-2
b)\(\sqrt{x+3}\)-\(\sqrt{x-5}\)=2 ( đk :x≥5)
⇔\(\sqrt{x+3}\)= 2+\(\sqrt{x-5}\)
⇔(\(\sqrt{x+3}\))2= (2+\(\sqrt{x-5}\))2
⇔x+3= 4 +4\(\sqrt{x-5}\) +x-5
⇔x-x-\(4\sqrt{x-5}\)= -3+4-5
⇔ \(-4\sqrt{x-5}\)=-4
⇔\(\sqrt{x-5}\)=1
⇔x-5=1
⇔x=6 ( thỏa mãn điều kiện xác định)
Vậy x=6
a) \(\sqrt{x+2}=4-x\)
ĐKXĐ : \(-2\le x\le4\)
Bình phương hai vế
<=> x + 2 = x2 - 8x + 16
<=> x2 - 8x + 16 - x - 2 = 0
<=> x2 - 9x + 14 = 0 (*)
Δ = b2 - 4ac = 81 - 56 = 25
Δ > 0 nên (*) có hai nghiệm phân biệt : x1 = -2 (tm) ; x2 = -7 (loại)
Vậy phương trình có nghiệm duy nhất x = -2
b) \(\sqrt{x^2+1}=5-x^2\)
ĐKXĐ : \(-\sqrt{5}\le x\le\sqrt{5}\)
Bình phương hai vế
<=> x2 + 1 = x4 - 10x2 + 25
<=> x4 - 10x2 + 25 - x2 - 1 = 0
<=> x4 - 11x2 + 24 = 0 (1)
Đặt t = x2 ( t ≥ 0 )
(1) <=> t2 - 11t + 24 = 0 (*)
Δ = b2 - 4ac = 121 - 96 = 25
Δ > 0 nên (*) có hai nghiệm phân biệt : t1 = 8 (tm) ; t2 = 3(tm)
=> x2 = 8 hoặc x2 = 3
=> x = ±2√2 (loại) hoặc x = ±√3 (tm)
Vậy phương trình có nghiệm x = ±√3
\(3\left(x^2-x+1\right)^2-2\left(x+1\right)^2=5.\)\(\left(x^3+1\right)\)
\(\Leftrightarrow3\left(x^2-x+1\right)^2-2\left(x+1\right)^2=5\left(x+1\right)\left(x^2-x+1\right)\)
Đặt \(x+1=a,x^2-x+1=b\), phương trình trở thành:
\(3b^2-2a^2=5ab\)
\(\Leftrightarrow3b^2-5ab-2a^2=0\)
\(\Leftrightarrow\)\(\left(3b+a\right)\left(b-2a\right)=0\)
\(\Leftrightarrow\left[3\left(x^2-x+1\right)+x+1\right]\left[x^2-x+1-2\left(x+1\right)\right]=0\)
\(\Leftrightarrow\left(3x^2-2x+4\right)\left(x^2-3x-1\right)=0\)
Vì \(3x^2-2x+4=\left(x-1\right)^2+2x^2+3>0\forall x\)nên:
\(x^2-3x-1=0:\left(3x^2-2x+4\right)\)
\(\Leftrightarrow x^2-3x-1=0\)
\(\Leftrightarrow\left(x-\frac{3}{2}\right)^2-\frac{13}{4}=0\)
\(\Leftrightarrow\left(x-\frac{3}{2}\right)^2=\frac{13}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{3}{2}=\frac{\sqrt{13}}{2}\\x-\frac{3}{2}=\frac{-\sqrt{13}}{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{3+\sqrt{13}}{2}\\x=\frac{3-\sqrt{13}}{2}\end{cases}}}\)
Vậy phương trình có tập nghiệm: \(S=\left\{\frac{3\pm\sqrt{13}}{2}\right\}\)
\(2\left(x^2+x+1\right)^2-7\left(x-1\right)^2=13\)\(\left(x^3-1\right)\)
\(\Leftrightarrow2\left(x^2+x+1\right)^2-7\left(x-1\right)^2=13\left(x-1\right)\left(x^2+x+1\right)\)
Đặt \(x-1=a,x^2+x+1=b\), phương trình trở thành:
\(2b^2-7a^2=13ab\)\(x=4\)
\(\Leftrightarrow2b^2-13ab-7a^2=0\)
\(\Leftrightarrow\left(b-7a\right)\left(a+2b\right)=0\)
\(\Leftrightarrow\left[x^2+x+1-7\left(x-1\right)\right]\left[x-1+2\left(x^2+x+1\right)\right]=0\)
\(\Leftrightarrow\left(x^2-6x+8\right)\left(2x^2+3x+1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(2x+1\right)\left(x+1\right)=0\)
-Xét các trường hợp sau:
+Với \(x-2=0\Leftrightarrow x=2\)
+Với \(x-4=0\Leftrightarrow x=4\)
+Với \(x+1=0\Leftrightarrow x=-1\)
+Với \(2x+1=0\Leftrightarrow x=-0,5\)
Vậy phương trình có tập nghiệm: \(S=\left\{-1;-0,5;2;4\right\}\)
a2+b2+c2 = (a+b+c).(a2+b2+c2-ab-bc-ca)
=> (a+b+c).(a2+b2+c2-ab-bc-ca)= 0