$\frac{x+y}{z}$ + $\frac{y+z}{x}$ + $\frac{z+x}{y}$- $\frac{x^3+y^3+z^3}{xyz}$ =2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\)
\(4x^2-y^2+2x+y\)
\(=\left(4x^2-y^2\right)+\left(2x+y\right)\)
\(=\left(2x-y\right)\left(2x+y\right)+\left(2x+y\right)\)
\(=\left(2x+y\right)\left(2x-y+1\right)\)
\(b)\)
\(x^3+2x^2-6x-27\)
\(=x^3+5x^2+9x-3x^2-15x-27\)
\(=x\left(x^2+5x+9\right)-3\left(x^2+5x-9\right)\)
\(=\left(x-3\right)\left(x^2+5-9\right)\)
\(c)\)
\(12x^3+4x^2-27x-9\)
\(=\left(12x^3+4x^2\right)-\left(27x+9\right)\)
\(=4x^2\left(3x+1\right)-9\left(3x+1\right)\)
\(=\left(3x+1\right)\left(4x^2-9\right)\)
\(=\left(3x+1\right)[\left(2x\right)^2-3^2]\)
\(=\left(3x+1\right)\left(2x-3\right)\left(2x+3\right)\)
\(d)\)
\(16x^2+4x-y^2+y^2\)
\(=16x^2+4x\)
\(4x\left(4x+1\right)\)
1. ( x2 - x + 2 )4 - 3x2 ( x2 - x + 2 )2 + 2x4
Đặt t = x2 - x + 2 , ta có :
t4 - 3x2t2 + 2x4
= t4 - 2x2t2 - x2t2 + 2x4
= t2 ( t2 - 2x2 ) - x2 ( t2 - 2x2 )
= ( t2 - x2 ) ( t2 - 2x2 )
= ( t - x ) ( t + x ) ( t2 - 2x2 )
= ( x2 - x + 2 - x ) ( x2 - x + 2 + x ) [ ( x2 - x + 2 )2 - 2x2 ]
= ( x2 - 2x + 2 ) ( x2 + 2x ) ( x2 - 3x + 2 ) ( x2 + x + 2 )
2. 3 ( - x2 + 2x + 3 )4 - 26x2 ( - x2 + 2x + 3 )2 - 9x4
Đặt y = - x2 + 2x + 3 , ta có :
3y4 - 26x2y2 - 9x4
= x2y2 + 3y4 - 9x4 - 27x2y2
= y2 ( x2 + 3y2 ) - 9x2 ( x2 + 3y2 )
= ( y2 - 9x2 ) ( x2 + 3y2 )
= ( y - 3x ) ( y + 3x ) ( x2 + 3y2 )
= ( - x2 + 2x + 3 - 3x ) ( - x2 + 2x + 3 + 3x ) [ x2 + 3 ( - x2 + 2x + 3 )2 ]
= ( - x2 - x + 3 ) ( - x2 + 5x + 3 ) ( 3x4 - 12x3 - 5x2 + 36x + 27 )
Vì ABCD là hình bình hành => AB//CD mà AM thuộc AB; CN thuộc CD => AM//CN
Mà AM=CN
=> AMCN là hình bình hành (tứ giác có cặp cạnh đối // và = nhau là hình bình hành)
=> AC và MN là đường chéo của hbh AMCN
Gọi O là giao của AC và MN => O là trung điểm của AC và MN (Trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)
A cố định C cố định => O cố định => MN luôn đi qua O cố định
Hình tự vẽ nhé
Theo đề ra: K là điểm đối xứng của C qua AD <=> DC = DK
Xét hai tam giác vuông IDK và IDC:
+) DC = DK (cmt)
+) ID: chung
=> Tam giác IDK = IDC (Hai cạnh góc vuông)
=> Góc KID = CID
Ta có: AIB = KID (Đối đỉnh)
=> Góc AIB = góc CID
x2 - 2xy - 8y2 = ( x2 - 2xy + y2 ) - 9y2 = ( x - y )2 - ( 3y )2 ( x - y - 3y ) ( x - y + 3y )
M A B C E F
a) Xét tam giác ABC có \(EM//AC\left(gt\right)\), mà M là trung điểm của BC(gt) => E là trung điểm của AB
CMTT => F là trung điểm của AC
b) Xét tam giác ABC có
- E là trung điểm của AB( gt)
- F là trung điểm của AC(gt)
=> EF là đường trung bình của tam giác ABC
=> BC = 2EF( tính chất đường trung bình của tam giác)
c) Ta có: EF//BC( do EF là đường trung bình của tam giác ABC)
\(\Rightarrow\hept{\begin{cases}\widehat{EAF}=\widehat{ABC}\\\widehat{AFE}=\widehat{ACB}\end{cases}}\)(Các cặp góc đồng vị)
Mà \(\widehat{ABC}=\widehat{ACB}\)( Tam giác ABC cân tại A)
\(\Rightarrow\widehat{EAF}=\widehat{AFE}\Rightarrow\Delta AEF\)cân tại A
\(\Rightarrow AE=AF\)
Xét tứ giác AEMF có
\(\hept{\frac{AE//MF\left(gt\right)}{AF//EM\left(gt\right)}}\)
=> Tứ giác AEMF là Hình bình hành
\(\Rightarrow AE=ME=MF=AF\)