Cho x, y, z >0 thỏa x + y + z >= 3. Chứng minh rằng : \(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{xz}}+\frac{z^2}{z+\sqrt{xy}}\ge\frac{3}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
GIẢI HỆ PHƯƠNG TRÌNH\(\hept{\begin{cases}|X-1|+2\sqrt{Y+2}=5\\3\cdot\sqrt{Y+2}-|X-1|=5\end{cases}}\)
Lấy phương trình (1) + (2) ta được :
\(\left|x-1\right|+2\sqrt{y+2}+3\sqrt{y+2}-\left|x-1\right|=10\)
\(\Leftrightarrow5\sqrt{y+2}=10\Leftrightarrow\sqrt{y+2}=2\)với \(y\ge-2;y\in Z\)
bình phương 2 vế : \(y+2=4\Leftrightarrow y=2\)( tmđk )
Thế y = 2 vào hệ phương trình trên ta được : \(\hept{\begin{cases}\left|x-1\right|+2\sqrt{4}=5\\3\sqrt{4}-\left|x-1\right|=5\end{cases}}\)
\(\Leftrightarrow\left|x-1\right|=1\Leftrightarrow x=0;x=2\)
Vậy \(\left(x;y\right)=\left(0;2\right);\left(x;y\right)=\left(2;2\right)\)
\(\sqrt{\sqrt{2}+2\sqrt{2-1}}+\)\(\sqrt{\sqrt{2}-2\sqrt{2-1}}\)
\(=\sqrt{\sqrt{2}+2\sqrt{1}}+\)\(\sqrt{\sqrt{2}-2.\sqrt{1}}\)
\(=\sqrt{\sqrt{2}+2.1}+\)\(\sqrt{\sqrt{2}-2.1}\)
\(=\sqrt{\sqrt{2}+2}+\)\(\sqrt{\sqrt{2}-2}\)
\(=\sqrt[4]{2}\sqrt{2}+\sqrt[4]{2}\left(-\sqrt{2}\right)\)
\(=\sqrt[4]{2}\left(\sqrt{2}+-\sqrt{2}\right)\)
\(=\sqrt[4]{2}.0\)
\(=0\)
Mk ko chắc đúng nên sai đừng chửi nhé
Dương lớp 6 chưa học thì đừng có làm
Phan Hoàng Quốc Khánh đề có sai không bạn ? \(\sqrt{\sqrt{2}-2\sqrt{2-1}}=\sqrt{\sqrt{2}-2}\)
mà \(\sqrt{2}< 2\)nên \(\sqrt{\sqrt{2}-2}\)không tồn tại
xem lại đề đi bạn :)
\(A=\frac{2\sqrt{x}+1}{x+\sqrt{x}+1}\)với \(x=16\Rightarrow\sqrt{x}=4\)
\(=\frac{2.4+1}{16+4+1}=\frac{9}{21}=\frac{3}{7}\)
Vậy với x = 16 thì A nhận giá trị là 3/7
b, Sửa rút gọn biểu thức B nhé
Với \(x\ge0;x\ne1\)
\(B=\left(\frac{1}{\sqrt{x}-1}-\frac{\sqrt{x}}{1-x}\right):\left(\frac{\sqrt{x}}{\sqrt{x}-1}-1\right)\)
\(=\left(\frac{1}{\sqrt{x}-1}+\frac{\sqrt{x}}{\left(\sqrt{x}\pm1\right)}\right):\left(\frac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}-1}\right)\)
\(=\frac{\sqrt{x}+1+\sqrt{x}}{\left(\sqrt{x}\pm1\right)}.\frac{\sqrt{x}-1}{1}=\frac{2\sqrt{x}}{\sqrt{x}+1}\)
c, Ta có : \(M=\frac{A}{B}\)hay \(M=\frac{\frac{2\sqrt{x}+1}{x+\sqrt{x}+1}}{\frac{2\sqrt{x}}{\sqrt{x}+1}}\)
\(=\frac{2\sqrt{x}+1}{x+\sqrt{x}+1}.\frac{\sqrt{x}+1}{2\sqrt{x}}\)
\(=\frac{\left(2\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}{2\sqrt{x}\left(x+\sqrt{x}+1\right)}\)
Dễ dàng chứng minh được:
\(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\) với \(a,b,c>0\)(1)
Dấu bằng xảy ra \(\Leftrightarrow\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)
Theo đề bài, vì x, y, z > 0 nên áp dụng (1), ta có:
\(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{zx}}+\frac{z^2}{z+\sqrt{xy}}\ge\)\(\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}\)(2)
Vì x y, z > 0 nên áp dụng bất đẳng thức Cô-si cho 2 số dương, ta được:
\(x+y\ge2\sqrt{xy}\)(3)
Chứng mih tương tự, ta được;
\(y+z\ge2\sqrt{yz}\)(4);
\(z+x\ge2\sqrt{zx}\)(5)
Từ (3), (4), (5), ta được:
\(2\left(x+y+z\right)\ge2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)\)
\(\Leftrightarrow x+y+z\ge\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)
\(\Leftrightarrow2\left(x+y+z\right)\ge x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)
\(\Leftrightarrow\frac{1}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}\ge\)\(\frac{1}{2\left(x+y+z\right)}\)
\(\Leftrightarrow\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}\ge\frac{x+y+z}{2}\)
Mà theo đề bài, \(x+y+z\ge3\) nên:
\(\frac{x+y+z}{2}\ge\frac{3}{2}\)
Suy ra \(\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}\ge\frac{3}{2}\left(6\right)\)
Từ (2) và (6), ta được:
\(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{zx}}+\frac{z^2}{z+\sqrt{xy}}\ge\frac{3}{2}\)(điều phải chứng minh)
Dấu bằng xảy ra
\(\Leftrightarrow\hept{\begin{cases}x=y=z\\x+y+z=3\end{cases}\Leftrightarrow x=y=z=1}\)
Vậy nếu x, y, z > 0 và \(x+y+z\ge3\)thì \(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{zx}}+\frac{z^2}{z+\sqrt{xy}}\ge\frac{3}{2}\)