K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2021

(xin lỗi vì mình không biết chèn hình, các bạn chịu khó tự vẽ. Cảm ơn ạ)
Gọi O là giao điểm 2 đường chéo
       I là trung điểm BK
      H là trung điểm BE
Xét tam giác(tg) BKD có
   I là trung điểm BK
   O là trung điểm BD
=>OI là đường trung bình của tgBKD
=> OI // KD
=> OI \(\perp\)BK
Lại có I là trung điểm BK
=> O \(\in\)đường trung trực của BK
*Tương tự ta sẽ chứng minh được O \(\in\)đường trung trực của BE
Từ đó suy ra O là trực tâm của tgBKE
Ta có BO = BD:2
<=>   BO = \(\frac{5}{2}\)
Vậy...
Done~

7 tháng 4 2023

Giao điểm 3 đường trung trực thì liên quan gì tới trực tâm bạn nhỉ?

14 tháng 3 2021

bạn đố thế ai chơi

12 tháng 3 2021

Ta có: 

\(n^5+n^4-2n^3-2n^2+1=p^k\Leftrightarrow\left(n^2+n-1\right)\left(n^3-n-1\right)=p^k\)

Từ giả thiết \(\Rightarrow n,k\ge2\)

Ta có:

\(\hept{\begin{cases}n^3-n-1>1,n^2+n-1>1,\forall n\ge2\\\left(n^3-n-1\right)-\left(n^2+n-1\right)=\left(n+1\right)n\left(n-2\right)\ge0,\forall n\ge2\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}n^3-n-1=p^r\\n^2+n-1=p^s\end{cases}}\) trong đó \(\hept{\begin{cases}r\ge s\ge0\\r+s=k\end{cases}}\)

\(\Rightarrow n^3-n-1⋮n^2+n-1\)

\(\Rightarrow n^3-n-1-\left(n-1\right)\left(n^2+n-1\right)⋮n^2+n-1\)

\(\Rightarrow n-2⋮n^2+n-1\)          (1)

Mặt khác :

\(\left(n^2+n-1\right)-\left(n-2\right)=n^2+1>0,\forall n\)

\(\Rightarrow n^2+n-1>n-2\ge0,\forall n\ge2\)        (2)

Từ (1) và (2) => n=2 => \(p^k=25\Rightarrow\hept{\begin{cases}p=5\\k=2\end{cases}}\)

Vậy bộ số cần tìm là (n,k,p)=(2,2,5)

9 tháng 3 2021

Nội quy của OLM

7 tháng 3 2021

TH1: Nếu có 1 số bằng 0, giả sử là z, khi đó ta có \(x^4+y^4=1\)

và \(P=x^2+y^2\ge\sqrt{x^4+y^4}=1\)

Dấu '=' xảy ra khi 1 số =0, một số = \(\pm1\)

TH2: Nếu các số đều khác 0

Từ giả thiết => tồn tại tam giác ABC nhọn sao cho

\(x^2=\cos A,y^2=\cos B,z^2=\cos C\)

\(P=\cos A+\cos B+\cos C-\sqrt{2\cos A\cos B\cos C}\)

\(=1+4\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}-\sqrt{2\cos A\cos B\cos C}\)

Ta chứng minh \(4\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}\ge\sqrt{2\cos A\cos B\cos C}\)  (1)

Ta có (1) \(\Leftrightarrow8\sin^2\frac{A}{2}\sin^2\frac{B}{2}\sin^2\frac{C}{2}\ge\cos A\cos B\cos C\)

\(\Leftrightarrow\frac{8\sin^2\frac{A}{2}\sin^2\frac{B}{2}\sin^2\frac{C}{2}}{\sin A\sin B\sin C}\ge\frac{\cos A\cos B\cos C}{\sin A\sin B\sin C}\)

\(\Leftrightarrow\cot A\cot B\cot C\le\tan\frac{A}{2}\tan\frac{B}{2}\tan\frac{C}{2}\)

\(\Leftrightarrow\tan A\tan B\tan C\ge\cot\frac{A}{2}\cot\frac{B}{2}\cot\frac{C}{2}\)

\(\Leftrightarrow\tan A+\tan B+\tan C\ge\cot\frac{A}{2}+\cot\frac{B}{2}+\cot\frac{C}{2}\)  (2)

bđt (2) đúng vì \(\tan A+\tan B\ge2\cot\frac{C}{2}\)  và 2 bđt tương tự

Dấu '=' xảy ra khi tam giác đều \(\Leftrightarrow x^2=y^2=z^2=\frac{1}{2}\)

\(\Rightarrow P\ge1\)

Dấu '=' xảy ra khi 2 số =0, một số \(=\pm1\)  hoặc \(x^2=y^2=z^2=\frac{1}{2}\)

Vậy GTNN của P là 1