Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(M=\frac{2x+y}{xy}+\frac{3}{2x+y}=\frac{2x+y}{2}+\frac{3}{2x+y}\)
\(=\left(\frac{3}{8}.\frac{2x+y}{2}+\frac{3}{2x+y}\right)+\frac{5}{8}.\frac{2x+y}{2}\)
Có: \(\frac{3}{8}.\frac{2x+y}{2}+\frac{3}{2x+y}\ge2\sqrt{\frac{3}{8}.\frac{2x+y}{2}.\frac{3}{2x+y}}=\frac{3}{2}\)
Dấu '=' xảy ra <=> \(\frac{3}{8}.\frac{2x+y}{2}=\frac{3}{2x+y}\)
Có: \(\frac{5}{8}.\frac{2x+y}{2}\ge\frac{5}{8}\sqrt{2xy}=\frac{5}{4}\)
Dấu '=' xảy ra <=> 2x=y và xy=2
Do đó \(M\ge\frac{3}{2}+\frac{5}{4}=\frac{11}{4}\)
Dấu '=' xảy ra <=> x=1 và y=2
Vậy GTNN của M là 11/4 khi x=1 và y=2
\(P=\frac{1}{a^2+b^2+1}+\frac{1}{2ab}\)
\(P=\frac{1}{a^2+b^2+1}+\frac{\frac{1}{9}}{2ab}+\frac{4}{9ab}\)
\(\ge\frac{\left(1+\frac{1}{3}\right)^2}{a^2+b^2+1+2ab}+\frac{4}{9ab}\)
\(\ge\frac{\left(1+\frac{3}{4}\right)^2}{\left(a+b\right)^2+1}+\frac{16}{9\left(a+b\right)^2}\)
\(\ge\frac{\left(1+\frac{1}{3}\right)^2}{1+1}+\frac{16}{9}=\frac{8}{3}\)
Dấu = xảy ra khi \(a=b=\frac{1}{2}\)