6784678578567835674567356353567356735+478678 468 678 4678467345567547+467846787905445646843567563674356456537565656565656565656565656565656565656565656565656565676585675367573575+6735673573 567356745675678+7985785786=?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề thi đánh giá năng lực
1+1=2 mình biết bài này rất khó nên cố gắng làm nếu sai xin bạn hãy chỉ cho mìn cách làm đúng
x-26,789 =12,34+33,45
x-26,789=45,79
x=45,79+26,789
x=72,579
. Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a va cạnh bên bằng a√2
`âu 1. Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a va cạnh bên bằng a2–√. a) Tính thể tích của hình chóp đã cho. b) Tính bán kính mặt cầu ngoại tiếp hình chóp S.ABCD. c) Gọi A’ và C’ lần lượt là trung điểm của hai cạnh SA và SC. Chứng minh rằng hai hình chóp A’.ABCD và C’.CBAD bằng nhau. Câu 2. Trong không gian tọa độ Oxyz, cho các điểm A(4; -1; 2), B(1; 2; 2) và C(1; -1; 5). a) Chứng minh rằng ABC là tam giác đều. b) Viết phương trình mp(ABC). Tính thể tích khối tứ diện giới hạn bởi mp(ABC) và các mặt phẳng tọa độ. c) Viết phương trình trục của đường tròn ngoại tiếp tam giác ABC. d) Tìm tọa độ điểm D sao cho ABCD là tứ diện đều.`
`âu 1. Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a va cạnh bên bằng a2–√. a) Tính thể tích của hình chóp đã cho. b) Tính bán kính mặt cầu ngoại tiếp hình chóp S.ABCD. c) Gọi A’ và C’ lần lượt là trung điểm của hai cạnh SA và SC. Chứng minh rằng hai hình chóp A’.ABCD và C’.CBAD bằng nhau. Câu 2. Trong không gian tọa độ Oxyz, cho các điểm A(4; -1; 2), B(1; 2; 2) và C(1; -1; 5). a) Chứng minh rằng ABC là tam giác đều. b) Viết phương trình mp(ABC). Tính thể tích khối tứ diện giới hạn bởi mp(ABC) và các mặt phẳng tọa độ. c) Viết phương trình trục của đường tròn ngoại tiếp tam giác ABC. d) Tìm tọa độ điểm D sao cho ABCD là tứ diện đều.`
\(g'\left(x\right)=ln\left(2\right).f'\left(x\right).2^{f\left(x\right)}-ln\left(3\right).f'\left(x\right).3^{f\left(x\right)}\)
\(g'\left(x\right)=0\Leftrightarrow\orbr{\begin{cases}f'\left(x\right)=0\left(1\right)\\ln\left(2\right)2^{f\left(x\right)}=ln\left(3\right)3^{f\left(x\right)}\left(2\right)\end{cases}}\)
\(\left(1\right)\): dựa vào đồ thị thấy có ba nghiệm phân biệt.
\(\left(2\right)\)tương đương với:
\(\left(\frac{3}{2}\right)^{f\left(x\right)}=\frac{ln\left(2\right)}{ln\left(3\right)}\Leftrightarrow f\left(x\right)=log_{\frac{3}{2}}\frac{ln\left(2\right)}{ln\left(3\right)}\approx-1,14\)
Đối chiếu đồ thị thấy không có nghiệm.
Vậy \(g\left(x\right)\)có ba điểm cực trị.
TL :
\(9.655.226.222.987\)
\(=5895.50172.987\)
\(=295763940.987\)
\(=291919008780\)
bạn đã ăn 1 vé báo cáo