K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2021

a, \(\left(x-5\right)^2-16=0\Leftrightarrow\left(x-9\right)\left(x-1\right)=0\Leftrightarrow x=1;x=9\)

b, \(\left(2x-5\right)^2=49=7^2\)

TH1 : \(2x-5=7\Leftrightarrow x=6\)

TH2 : \(2x-5=-7\Leftrightarrow x=-1\)

c, \(4x^2-4x+1=0\Leftrightarrow\left(2x-1\right)^2=0\Leftrightarrow x=\frac{1}{2}\)

d, \(9x^2-6x=-1\Leftrightarrow9x^2-6x+1=0\Leftrightarrow\left(3x-1\right)^2=0\Leftrightarrow x=\frac{1}{3}\)

phân tích thành nhân tử: x(x-y)3-y(y-x)2-y2(x-y)

x(x-y)3-y(y-x)2-y2(x-y)

= (y-x)(y^2-2y-3x)

nah bạn chúc bạn học tốt nha 

20 tháng 8 2021

x(x-y)3 -y(y-x)2 - y2(x-y)

= x(x-y)3 - y(x-y)2 - y2(x-y)

= (x-y)[x(x-y)2 - y(x-y) - y2]

=(x-y) [x(x2 - 2xy + y2) - xy + y2 -y2]

=(x-y)(x3 -2x2y +y2x - xy)

=x(x-y)(x2 - 2xy + y2 -y) 

=x(x-y)[(x-y)2-y]

20 tháng 8 2021

c) 4x(x-3) - (2x+1)2 =12

4x2 - 12x - (4x2 + 4x +1) = 12

4x2 -12x -4x2 - 4x -1 =12

(4x2 - 4x2) - (12x + 4x) -1 =12

-16x = 13

x= -13/16

Vậy x = -13/16

20 tháng 8 2021

c, \(4x\left(x-3\right)-\left(2x+1\right)^2=12\)

\(\Leftrightarrow4x^2-12x-4x^2-4x-1=12\)

\(\Leftrightarrow-16x-1=12\Leftrightarrow x=-\frac{13}{16}\)

20 tháng 8 2021

x^2 - x - y^2 - y 

= x^2 - y^2 - x - y 

= ( x - y ) ( x + y ) - ( x + y ) 

= ( x + y ) ( x - y - 1  ) 

20 tháng 8 2021

x^2 - 2xy + y^2 - z^2 

= ( x- y ) ^2 - z^2 

= ( x - y - z ) ( x - y + z ) 

Gọi E,F lần lượt là trung điểm của cạnh BD;AC; H trung điểm CA′ và I là giao điểm của EFvà AA′
Xét tam giác CA′A Có FH là đường trung bình nên AA′//FH ⇒A′I//FH
Xét tam giác EHF có A′I//FH và A′ trung điểm EH nên suy ra I trung điểm EF
Suy ra AA′ đi qua trung điểm I của EF cố định.
Chứng minh tương tự ta cũng có BB′;CC′;DD′ đi qua I
Vậy 4 đoạn thẳng AA′;BB′;CC′;DD′ đồng quy tại một điểm

20 tháng 8 2021

Trả lời:

a, \(A=\left(\frac{2-x}{x+3}-\frac{3-x}{x+2}+\frac{2-x}{x^2+5x+6}\right):\left(1-\frac{x}{x-1}\right)\left(ĐKXĐ:x\ne-2;x\ne-3;x\ne1\right)\)

 \(=\left(\frac{\left(2-x\right)\left(x+2\right)}{\left(x+2\right)\left(x+3\right)}-\frac{\left(3-x\right)\left(x+3\right)}{\left(x+2\right)\left(x+3\right)}+\frac{2-x}{\left(x+2\right)\left(x+3\right)}\right):\frac{x-1-x}{x-1}\)

\(=\frac{\left(2-x\right)\left(x+2\right)-\left(3-x\right)\left(x+3\right)+2-x}{\left(x+2\right)\left(x+3\right)}:\frac{-1}{x-1}\)

\(=\frac{4-x^2-\left(9-x^2\right)+2-x}{\left(x+2\right)\left(x+3\right)}\cdot\frac{x-1}{-1}=\frac{4-x^2-9+x^2+2-x}{\left(x+2\right)\left(x+3\right)}\cdot\frac{x-1}{-1}\)

\(=\frac{-x-3}{\left(x+2\right)\left(x+3\right)}\cdot\frac{x-1}{-1}=\frac{\left(-x-3\right)\left(x+1\right)}{\left(x+2\right)\left(x+3\right)\left(-1\right)}=\frac{-\left(x+3\right)\left(x+1\right)}{-\left(x+2\right)\left(x+3\right)}=\frac{x+1}{x+2}\)

b, A > 0 

\(\frac{x+1}{x+2}>0\)

\(\Leftrightarrow\hept{\begin{cases}x+1>0\\x+2>0\end{cases}}\) hoặc \(\hept{\begin{cases}x+1< 0\\x+2< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x>-1\\x>-2\end{cases}}\) hoặc \(\hept{\begin{cases}x< -1\\x< -2\end{cases}}\)

Vậy để A > 0 thì x > - 1 với x khác 1

                 hoặc  x < - 2 với x khác - 3

20 tháng 8 2021

ĐKXĐ : \(\hept{\begin{cases}x\ne-3\\x\ne-2\\x\ne1\end{cases}}\);

Ta có \(\frac{2-x}{x+3}-\frac{3-x}{x+2}+\frac{2-x}{x^2+5x+6}\)

\(=\frac{\left(2-x\right)\left(x+2\right)+\left(x-3\right)\left(x+3\right)+2-x}{\left(x+3\right)\left(x+2\right)}\)

\(=\frac{-x-3}{\left(x+3\right)\left(x+2\right)}=-\frac{1}{x+2}\)

Khi đó \(\left(\frac{2-x}{x+3}-\frac{3-x}{x+2}+\frac{2-x}{x^2+5x+6}\right):\left(1-\frac{x}{x-1}\right)=-\frac{1}{x+2}:-\frac{1}{x-1}=\frac{x-1}{x+2}\)

Khi A = 0 => x - 1 = 0 => x = 1 (loại) 

Khi A > 0 => \(\frac{x-1}{x+2}>0\)

TH1 : \(\hept{\begin{cases}x-1>0\\x+2>0\end{cases}}\Leftrightarrow x>1\)

TH2 \(\hept{\begin{cases}x-1< 0\\x+2< 0\end{cases}}\Rightarrow x< -2\)

Vậy với x > 1 hoặc x < - 2 ; x \(\ne\)-3 thì A > 0 

20 tháng 8 2021

\(D=\frac{1}{x^2}+\frac{1}{y^2}=\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{2xy}\right)-\frac{1}{2xy}\)

\(=\left(\frac{1}{x}+\frac{1}{y}\right)^2-\frac{2}{xy}=\left(\frac{x+y}{xy}\right)^2-\frac{2}{xy}=\left(\frac{4}{-1}\right)^2-\frac{2}{-1}=18\)

DD
20 tháng 8 2021

\(d=\frac{1}{x^2}+\frac{1}{y^2}=\frac{x^2+y^2}{x^2y^2}=\frac{\left(x+y\right)^2-2xy}{\left(xy\right)^2}\)

\(=\frac{4^2-2.\left(-1\right)}{\left(-1\right)^2}==\frac{16+2}{1}=18\)