Tìm GTLN cua A=5n-2/2n-1 khi n la so tu nhien
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
LƯU Ý
Các bạn học sinh KHÔNG ĐƯỢC đăng các câu hỏi không liên quan đến Toán, hoặc các bài toán linh tinh gây nhiễu diễn đàn. Online Math có thể áp dụng các biện pháp như trừ điểm, thậm chí khóa vĩnh viễn tài khoản của bạn nếu vi phạm nội quy nhiều lần.
Chuyên mục Giúp tôi giải toán dành cho những bạn gặp bài toán khó hoặc có bài toán hay muốn chia sẻ. Bởi vậy các bạn học sinh chú ý không nên gửi bài linh tinh, không được có các hành vi nhằm gian lận điểm hỏi đáp như tạo câu hỏi và tự trả lời rồi chọn đúng.
Mỗi thành viên được gửi tối đa 5 câu hỏi trong 1 ngày
Các câu hỏi không liên quan đến toán lớp 1 - 9 các bạn có thể gửi lên trang web h.vn để được giải đáp tốt hơn.
Do 9 đường thẳng đó không có 2 đt nào song song. Gọi các đường thẳng đó là a, b, c, d, e, f, g, h, i. Gọi I là giao điểm của a và b.
Nếu 7 đt còn lại đi qua I coi nhu bài toán được giải quyết vì khi đó xuất hiện 18 góc nhỏ chính là 9 cặp góc đối đỉnh. Mà số đo góc I = 360 độ. Vậy 360:18 = 20 độ. Điều này chứng tỏ có ít nhất 2 góc nhỏ hơn hoặc bằng 20 độ.Hay 2 đường thẳng mà góc nhọn giữa chúng nhỏ hơn hoặc bằng 20 độ.
Nếu 7 đường thẳng đó chưa đi qua I. Ta tiến hành tạo ra các đường thẳng song song với 7 đường trên nhưng đi qua I. Lúc này lời giải tương tự trên
Lưu ý: Đề cần cải chính một chút là nhỏ thua hoặc bằng 20 độ. Trường hợp đặc biệt khi các đường thẳng đó lần lượt quay quanh I một góc 20 độ thì ta có 18 góc bảng nhau và bằng 20 độ mà không nhỏ hơn 20 độ.
Vận tốc ngược dòng của cano là
21km/h-3km/h=18km/h
Thời gian cano đi ngược dòng 30km là
30km/18km/h=5/3 h
vận tốc xuôi dòng là
21km/h+3km/h=24km/h
quãng đường cano đi được trong 5/3h là
24km/h.5/3h=40 km
Mình không hiểu đề bài của bạn!
Mà đây không phải toán lớp 7 mà là toán lớp 5!
chúc bạn may mắn
a) Ta có: \(f\left(\frac{1}{3}\right)=\frac{1}{3}+\frac{1^2}{3^2}+\frac{1^3}{3^3}+....+\frac{1^{2016}}{3^{2016}}\)
\(\Rightarrow3.f\left(\frac{1}{3}\right)=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2015}}\)
\(\Rightarrow3.f\left(\frac{1}{3}\right)-f\left(\frac{1}{3}\right)=\left(1+\frac{1}{3}+...+\frac{1}{3^{2015}}\right)\)\(-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2016}}\right)\)
\(\Rightarrow2.f\left(\frac{1}{3}\right)=1-\frac{1}{3^{2016}}\)
\(\Rightarrow f\left(\frac{1}{3}\right)=\frac{1-\frac{1}{3^{2016}}}{2}\)