Tìm 5 chữ số tân cùng của số Fermat F24 = 22^24 + 1 (Casio)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
PX
1
PX
1
TC
Thầy Cao Đô
Giáo viên
VIP
8 tháng 12 2022
Em sẽ sử dụng máy tính casio và nhập biểu thức sau:
$(2^{24}+1)$ : R$10^5$, ta sẽ được kết quả $167$,R = $77217$ nên năm chữ số tận cùng bên phải là $77217$.
Để bấm được ": R", con bấm tổ hợp phím này nhé.
TL
1
Bài toán này tương đương với: tìm số dư khi chia F_{24}=2^{2^{24}}+1chia10^5F24=2224+1chia105
Ta có nhận xét:
1) 2^{2^{n+1}}=2^{2^n}\times2^{2^n}22n+1=22n×22n
2) 2^{2^n}\equiv a\left(mod10^5\right)\Rightarrow2^{2^{n+1}}\equiv a^2\left(mod10^5\right)22n≡a(mod105)⇒22n+1≡a2(mod105)
Từ đây ta có thể tính đồng dư của 2^{2^n}theo\left(mod10^5\right)22ntheo(mod105) như sau (tính máy tính)
2^{2^1}\equiv4221≡4 , 2^{2^2}\equiv16222≡16 , , 2^{2^3}\equiv256223≡256
2^{2^4}\equiv65536224≡65536 , ....... , 2^{2^{24}}\equiv975362224≡97536
Vậy F_{24}=2^{2^{24}}+1=97536+1F24=2224+1=97536+1. Năm chữ số cuối cùng F_{24}=2^{2^{24}}+1F24=2224+1 là 97537
(CHÚ THÍCH : mod là phép chia lấy phần dư ví dụ Cho hai số dương, (số bị chia) a và (số chia) n, a modulo n (viết tắt là a mod n) là số dư của phép chia có dư Euclid của a cho n. Ví dụ, biểu thức "5 mod 2" bằng 1 vì 5 chia cho 2 có thương số là 2 là số dư là 1, ta có thể viết 5\equiv≡1mod2 )
CHO CHỊ XIN 1TÍCH NHA :))