Cho hai góc nhọn $\alpha,$ $\beta$ biết rằng $\alpha < \beta$.
Ta luôn có: $\sin \alpha < \sin \beta$ và $\cos \alpha > \cos \beta$. So sánh:
a) $\tan \alpha$ và $\tan \beta$;
b) $\cot \alpha$ và $\cot \beta$.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.tan\alpha=\dfrac{sin\alpha}{cos\alpha}< sin\alpha\left(\alpha nhọn\Rightarrow sin\alpha>0,cos\alpha>0\right)\)
\(b.cot\alpha=\dfrac{cos\alpha}{sin\alpha}< cos\alpha\left(\alpha nhọn\Rightarrow sin\alpha>0,cos\alpha>0\right)\)
\(a.sin35^o< sin37^o< tan37^o\)
\(b.cos40^o< cot40^o=tan50^o< tan55^o\)
a) sin 40 - cos 50 =0
b) sin230 + sin240 + sin250 + sin260 = 2
c) cos210 - cos220 + cos230 - cos240 - cos250 - cos270 + cos280 = - sin230
\(a.sin40^o-cos50^o=sin40^o-sin40^o=0\)
\(b.sin^230^o+sin^240^o+sin^250^o+sin^260^o=\left(sin^230^0+sin^260^o\right)+\left(sin^240^0+sin^250^o\right)=\left(sin^230^0+cos^230^o\right)+\left(sin^240+cos^240^o\right)=1+1=2\)
\(c.\left(cos^210^o+cos^280^o\right)-\left(cos^220^o+cos^270^0\right)-\left(cos^240^o-cos^250^o\right)+cos^230^o=\left(cos^210^o+sin^210^o\right)-\left(cos^220^o+sin^220^o\right)-\left(cos^240^o+sin^240^0\right)+cos^230^0=1-1-1+\dfrac{3}{4}=-\dfrac{1}{4}\)
a) 1-sin2 α = cos2α
b) sin4α + cos4α +2.sin2α.cos2α = 1
c) tan2α-sin2α.tan2α = sin2α
d) tan2α.(2cos2α+sin2α-1) = sin2α
\(a.1-sin^2\alpha=cos^2\alpha+sin^2\alpha-sin^2\alpha=cos^2\alpha\)
\(b.sin^4\alpha+cos^4\alpha+2sin^2\alpha cos^2\alpha=\left(sin^2\alpha+cos^2\alpha\right)^2\)
\(c.tan^2\alpha-sin^2\alpha tan^2\alpha=tan^2\alpha\left(1-sin^2\alpha\right)=\dfrac{sin^2\alpha}{cos^2\alpha}cos^2\alpha=sin^2\alpha\)
\(d.tan^2\alpha\left(2cos^2\alpha+sin^2\alpha-1\right)=tan^2\alpha\left(2cos^2\alpha+sin^2\alpha-cos^2\alpha-sin^2\alpha\right)=\dfrac{sin^2\alpha}{cos^2\alpha}cos^2\alpha=sin^2\alpha\)
Ta có:
\(x^2-2\left(m+5\right)x+2m+9=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2m-9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=2m+9\end{cases}}\)
Thế vô làm nốt
Ta có :
\(\left(a+b\right)^2+\left(a-b\right)^2=2\left(a^2+b^2\right)\)
Do \(\left(a-b\right)^2\ge0\)nên \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)
b, Xét\(\left(a+b+c\right)^2+\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\)
Khai triển và rút gọn ta được : \(3\left(a^2+b^2+c^2\right)\)
Vậy \(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)
a) tan a < tan b
b) cot a > cot b
\(a.tan\alpha=\dfrac{sin\alpha}{cos\alpha}< tan\beta=\dfrac{sin\beta}{cos\beta}\)
\(b.cot\alpha=\dfrac{cos\alpha}{sin\alpha}>cot\beta=\dfrac{cos\beta}{sin\beta}\)