Phân tích thành nhân tử: x8+3x4+4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(x=a-b,y=b-c,z=c-a\to x+y+z=0.\) Ta có
\(\left(a-b\right)^5+\left(b-c\right)^5+\left(c-a\right)^5=x^5+y^5+z^5=x^5+y^5+\left(-x-y\right)^5=x^5+y^5-\left(x+y\right)^5.\)
Mà \(\left(x+y\right)^5=x^5+5x^4y+10x^3y^2+10x^2y^3+5xy^4+y^5,\) suy ra
\(\left(a-b\right)^5+\left(b-c\right)^5+\left(c-a\right)^5=x^5+y^5-\left(x^5+5x^4y+10x^3y^2+10x^2y^3+5xy^4+y^5\right)\)
\(=-\left(5x^4y+10x^3y^2+10x^2y^3+5xy^4\right)=-5xy\left(x^3+2x^2y+2xy^2+y^3\right)\)
\(=-5xy\left(x+y\right)\left(x^2+xy+y^2\right)=5xyz\left(x^2+xy+y^2\right)\vdots5xyz=5\left(a-b\right)\left(b-c\right)\left(c-a\right).\)
Suy ra điều phải chứng minh.