Với x > 0, tìm GTNN của biểu thức A =( 3x4 + 16 )/x3
Cảm ơn đã giúp !!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n^5-5*5^3+4*n=(n^5-n^3)-(4n^3-4n)=n^3(n^2-1)-4n(n^2-1)=(n^3-4n)(n^2-1)=n(n^2-4)(n^2-1)=(n-2)(n-1)n(n+1)(n+2)
vì(n-2)(n-1)n(n+1)(n+2)là tích 5 số nguyên liên tiếp nên chia hết cho 3 và 5
Mà (3;5)=1=>(n-2)(n-1)n(n+1)(n+2) chia hết cho 15
vì trong năm số nguyên liên tiếp thì có ít nhất một số chia hết cho 2 và một số chia hết cho 4
=>(n-2)(n-1)n(n+1)(n+2) chia hết cho 8
Mà (8;15)=120
=> (n-2)(n-1)n(n+1)(n+2) chia hết cho 120
hay n^5-5*n^3+4*n
Gọi 3 số tự nhiên liên tiếp đó là n-1, n, n+1 (n thuộc N*)
Ta phải chứng minh A = (n-1)n(n+1) chia hết cho 6
n-1 và n là 2 số tự nhiên liên tiếp nên 1 trong 2 số phải chia hết cho 2
=> A chia hết cho 2
n-1, n và n+1 là 3 số tự nhiên liên tiếp nên 1 trong 3 số phải chia hết cho 3 => A chia hết cho 3
Mà (2; 3) = 1 (2 và 3 nguyên tố cùng nhau) => A chia hết cho 2. 3 = 6 (đpcm)
Ta có:6=2.3
Vì hai số tự nhiên liên tiếp có 1 số chẵn nên chia hết cho 2
KL:Với mọi số tự nhiên n thì 3 số tự nhiên liên tiếp luôn chia hết cho 2 (1)
Gọi 3 số đó là n;n+1;n+2
Ta có 3TH
TH1:n=3k
=>n(n+1)(n+2)=3k(3k+1)(3k+2) chia hết cho 3
TH2:n=3k+1
=>n(n+1)(n+2)=(3k+1)(3k+2)(3k+3) chia hết cho 3 vì 3k+3 chia hết cho 3
TH3:n=3k+2
=>n(n+1)(n+2)=(3k+2)(3k+3)(3k+4) cia hết cho 3 vì 3k+3 chia hết cho 3
KL:Với mọi số tự nhiên thì 3 số tự nhiên liên tiếp luôn chia hết cho 3 (2)
Từ (1) và (2)
=>Ba số tự nhiên liên tiếp luôn chia hết cho 2.3=6
Ta có: a2+b2+c2=ab+bc+ca
=>2(a2+b2+c2)=2(ab+bc+ca)
<=>2a2+2b2+2c2=2ab+2bc+2ca
<=>2a2+2b2+2c2-2ab-2bc-2ca=0
<=>a2+a2+b2+b2+c2+c2-2ab-2bc=2ca=0
<=>(aa-2ab+b2)+(b2-2bc+b2)+(a2-2ca+c2)=0
<=>(a-b)2+(b-c)2+(a-c)2=0
=>hoặc (a-b)2=0 hoặc (b-c)2=0 hoặc (a-c)2=0<=>a-b=0 hoặc b-c=0 hoặc a-c=0<=>a=b hoặc b=c hoặc a=c
=>a=b=c