Cho tứ giác ABCD có P,I,Q lần lượt là trung điểm của AD,BD,BC
a) So sánh PI+IQ và AB+CD
b) Giả sử có: PQ=AB+CD/2 CM AB//CD
Giúp mik gấp với các bạn, nhớ vẽ hình nhé!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi E là trung điểm AD
→ AE = ED = \(\frac{1}{2}\) AD
Mà BC = \(\frac{1}{2}\)AD (gt)
⇒ AE = BC (= \(\frac{1}{2}\) AD)
Có: ABCD là hình thang(gt)
⇒ AD // BC (đn)
hay AE // BC (E ∈ AD- cv)
Xét tứ giác AECB có:
AE // CB (cmt)
AE = CB (cmt)
⇒ AECB là hình bình hành (DHNB)
Xét hình bình hành ABCE có:
ˆA = ˆB = 90o
AB = BC
⇒ ABCE là hình vuông
⇒ CE ⊥ AE tại E (đn)
hay CE ⊥ AD tại E
Xét ΔACD có:
CE là đường trung tuyến (cv)
CE là đường cao (CE ⊥ AD tại E - cmt)
⇒ ΔACD cân tại C (t/c)
mà ˆACE = 45o
⇒ ˆACD = 90o
⇒ ΔACD vuông cân tại C (đn)
Gọi I là giao điểm của AC và MN
Xét ΔAIM và ΔNIC có:
ˆAIM= ˆNIC (2 góc đối đỉnh)
ˆIMA = ˆICN
⇒ ΔAIM ᔕ ΔNIC (g.g)
⇒ AINI= IMICI (cặp cạnh t/u)
⇒ AIIM = NIIC
Xét ΔAIN và ΔMIC có:
AIIM = NIIC
ˆAIN = ˆMIC(2 góc đối đỉnh)
⇒ ΔAIN ᔕ ΔMIC (c.g.c)
⇒ ˆANI = ˆICM = ˆACB = 45o (Vì ΔABC vuông cân tại B)
→ ˆANM= 45o
Lại có: ˆAMN = 90o (AM ⊥ MN tại M)
⇒ ΔAMN vuông cân tại M (đpcm)
k cho mình nha
\(A=n\left(2n-3\right)-2n\left(n+2\right)\)
\(A=n\left(2n-3-2n-4\right)\)
\(A=-7n\)
\(\Rightarrow A\text{ }⋮\text{ }7\)
n(2n-3)-2n(n+2)
=2n2-3n-2n2-4n
= - 7n
Mà -7n ⋮ 7 với mọi n
vậy n(2n-3)-2n(n+2) luôn chia hết cho 7 với mọi n
k mình nha
\(-1< x< 1\Leftrightarrow-1< 0< x^2< 1\Leftrightarrow1-x>0\) (*)
Ta co \(\left(3x-5\right)^2\ge0\forall x\)
Dau '' = '' xay ra \(3x-5=0\Leftrightarrow3x=5\Leftrightarrow x=\frac{5}{3}\) ma de ra \(-1< x< 1\Leftrightarrow\left(3x-5\right)^2\ge0\) (**)
Tu (*) va (**) \(\Leftrightarrow\frac{\left(3x-5\right)^2}{1-x^2}>0\) (Khong tim duoc MinA)
Khong biet do de bai sai hay toi sai nua @@
a) \(\left(a^2-4\right)\left(a^2+4\right)\)
\(=a^4-8\)
c) \(\left(a-b\right)\left(a+b\right)\left(a^2+b^2\right)\left(a^4+b^4\right)\)
=\(\left(a^2-b^2\right)\left(a^2+b^2\right)=a^4-b^4\)
d) \(\left(a-b+c\right)\left(a+b+c\right)\)
=\(a^2-\left(b+c\right)^2\)
e) \(\left(x+2-y\right)\left(x-2-y\right)\)
=\(x-\left(2-y\right)\)
mik lm tắt có gì sai cho mik xin lỗi
( a2 - 4 )( a2 + 4 ) = a4 - 16
( x3 - 3y )( x3 + 3y ) = x6 - 9y2
( a - b )( a + b )( a2 + b2 )( a4 + b4 ) = ( a2 - b2 )( a2 + b2 )( a4 + b4 ) = ( a4 - b4 )( a4 + b4 ) = a8 - b8
( a - b + c )( a + b + c ) = ( a + c )2 - b2 = a2 - b2 + c2 + 2ac
( x + 2 - y )( x - 2 - y ) = ( x - y )2 - 22 = x2 - 2xy + y2 - 4
\(B=\left(\frac{x-2}{2x-2}-\frac{3}{2-2x}-\frac{x+3}{2x+2}\right):\left(1-\frac{x-3}{x+1}\right)\) \(ĐKXĐ:x\ne\pm1\)
\(B=\left(\frac{\left(x-2\right)\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}+\frac{3\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}-\frac{\left(x+3\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}\right)\)\(:\left(\frac{x+1-x+3}{x+1}\right)\)
\(B=\left(\frac{x^2-x-2+3x+3-x^2-2x+3}{2\left(x-1\right)\left(x+1\right)}\right):\left(\frac{4}{x+1}\right)\)
\(B=\left(\frac{4}{2\left(x-1\right)\left(x+1\right)}\right):\left(\frac{4}{x+1}\right)\)
\(B=\frac{4}{2\left(x-1\right)\left(x+1\right)}.\frac{x+1}{4}=\frac{1}{2\left(x-1\right)}\)
\(\frac{3^2-1}{5^2-1}\times\frac{7^2-1}{9^2-1}\times\frac{11^2-1}{13^2-1}\times...\times\frac{43^2-1}{45^2-1}\)
\(=\frac{2\times4}{4\times6}\times\frac{6\times8}{8\times10}\times\frac{10\times12}{12\times14}\times...\times\frac{42\times44}{44\times46}\)
\(=\frac{2\times4\times6\times8\times...\times42\times44}{4\times6\times8\times10\times...\times44\times46}\)
\(=\frac{2}{46}=\frac{1}{23}\)
\(8x-x^2-22=-\left(x^2-8x+22\right)=-\left(x^2-2.x.4+4^2+6\right)=-\left(x-4\right)^2-6< 0\)
với mọi \(x\).